Copied to
clipboard

G = D122order 244 = 22·61

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D122, C2×D61, C122⋊C2, C61⋊C22, sometimes denoted D244 or Dih122 or Dih244, SmallGroup(244,4)

Series: Derived Chief Lower central Upper central

C1C61 — D122
C1C61D61 — D122
C61 — D122
C1C2

Generators and relations for D122
 G = < a,b | a122=b2=1, bab=a-1 >

61C2
61C2
61C22

Smallest permutation representation of D122
On 122 points
Generators in S122
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122)
(1 122)(2 121)(3 120)(4 119)(5 118)(6 117)(7 116)(8 115)(9 114)(10 113)(11 112)(12 111)(13 110)(14 109)(15 108)(16 107)(17 106)(18 105)(19 104)(20 103)(21 102)(22 101)(23 100)(24 99)(25 98)(26 97)(27 96)(28 95)(29 94)(30 93)(31 92)(32 91)(33 90)(34 89)(35 88)(36 87)(37 86)(38 85)(39 84)(40 83)(41 82)(42 81)(43 80)(44 79)(45 78)(46 77)(47 76)(48 75)(49 74)(50 73)(51 72)(52 71)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(61 62)

G:=sub<Sym(122)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122), (1,122)(2,121)(3,120)(4,119)(5,118)(6,117)(7,116)(8,115)(9,114)(10,113)(11,112)(12,111)(13,110)(14,109)(15,108)(16,107)(17,106)(18,105)(19,104)(20,103)(21,102)(22,101)(23,100)(24,99)(25,98)(26,97)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122), (1,122)(2,121)(3,120)(4,119)(5,118)(6,117)(7,116)(8,115)(9,114)(10,113)(11,112)(12,111)(13,110)(14,109)(15,108)(16,107)(17,106)(18,105)(19,104)(20,103)(21,102)(22,101)(23,100)(24,99)(25,98)(26,97)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,84)(40,83)(41,82)(42,81)(43,80)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122)], [(1,122),(2,121),(3,120),(4,119),(5,118),(6,117),(7,116),(8,115),(9,114),(10,113),(11,112),(12,111),(13,110),(14,109),(15,108),(16,107),(17,106),(18,105),(19,104),(20,103),(21,102),(22,101),(23,100),(24,99),(25,98),(26,97),(27,96),(28,95),(29,94),(30,93),(31,92),(32,91),(33,90),(34,89),(35,88),(36,87),(37,86),(38,85),(39,84),(40,83),(41,82),(42,81),(43,80),(44,79),(45,78),(46,77),(47,76),(48,75),(49,74),(50,73),(51,72),(52,71),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(61,62)]])

D122 is a maximal subgroup of   D244  C61⋊D4
D122 is a maximal quotient of   Dic122  D244  C61⋊D4

64 conjugacy classes

class 1 2A2B2C61A···61AD122A···122AD
order122261···61122···122
size1161612···22···2

64 irreducible representations

dim11122
type+++++
imageC1C2C2D61D122
kernelD122D61C122C2C1
# reps1213030

Matrix representation of D122 in GL2(𝔽367) generated by

274361
6832
,
81184
92286
G:=sub<GL(2,GF(367))| [274,68,361,32],[81,92,184,286] >;

D122 in GAP, Magma, Sage, TeX

D_{122}
% in TeX

G:=Group("D122");
// GroupNames label

G:=SmallGroup(244,4);
// by ID

G=gap.SmallGroup(244,4);
# by ID

G:=PCGroup([3,-2,-2,-61,2162]);
// Polycyclic

G:=Group<a,b|a^122=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D122 in TeX

׿
×
𝔽