Copied to
clipboard

G = C7×C3.A4order 252 = 22·32·7

Direct product of C7 and C3.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C7×C3.A4, C22⋊C63, C21.2A4, C3.(C7×A4), (C2×C14)⋊1C9, (C2×C6).C21, (C2×C42).1C3, SmallGroup(252,10)

Series: Derived Chief Lower central Upper central

C1C22 — C7×C3.A4
C1C22C2×C6C2×C42 — C7×C3.A4
C22 — C7×C3.A4
C1C21

Generators and relations for C7×C3.A4
 G = < a,b,c,d,e | a7=b3=c2=d2=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

3C2
3C6
4C9
3C14
3C42
4C63

Smallest permutation representation of C7×C3.A4
On 126 points
Generators in S126
(1 112 52 93 103 122 20)(2 113 53 94 104 123 21)(3 114 54 95 105 124 22)(4 115 46 96 106 125 23)(5 116 47 97 107 126 24)(6 117 48 98 108 118 25)(7 109 49 99 100 119 26)(8 110 50 91 101 120 27)(9 111 51 92 102 121 19)(10 71 77 86 57 29 42)(11 72 78 87 58 30 43)(12 64 79 88 59 31 44)(13 65 80 89 60 32 45)(14 66 81 90 61 33 37)(15 67 73 82 62 34 38)(16 68 74 83 63 35 39)(17 69 75 84 55 36 40)(18 70 76 85 56 28 41)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)
(1 79)(3 81)(4 73)(6 75)(7 76)(9 78)(11 121)(12 122)(14 124)(15 125)(17 118)(18 119)(19 72)(20 64)(22 66)(23 67)(25 69)(26 70)(28 99)(30 92)(31 93)(33 95)(34 96)(36 98)(37 105)(38 106)(40 108)(41 100)(43 102)(44 103)(46 62)(48 55)(49 56)(51 58)(52 59)(54 61)(82 115)(84 117)(85 109)(87 111)(88 112)(90 114)
(1 79)(2 80)(4 73)(5 74)(7 76)(8 77)(10 120)(12 122)(13 123)(15 125)(16 126)(18 119)(20 64)(21 65)(23 67)(24 68)(26 70)(27 71)(28 99)(29 91)(31 93)(32 94)(34 96)(35 97)(38 106)(39 107)(41 100)(42 101)(44 103)(45 104)(46 62)(47 63)(49 56)(50 57)(52 59)(53 60)(82 115)(83 116)(85 109)(86 110)(88 112)(89 113)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)

G:=sub<Sym(126)| (1,112,52,93,103,122,20)(2,113,53,94,104,123,21)(3,114,54,95,105,124,22)(4,115,46,96,106,125,23)(5,116,47,97,107,126,24)(6,117,48,98,108,118,25)(7,109,49,99,100,119,26)(8,110,50,91,101,120,27)(9,111,51,92,102,121,19)(10,71,77,86,57,29,42)(11,72,78,87,58,30,43)(12,64,79,88,59,31,44)(13,65,80,89,60,32,45)(14,66,81,90,61,33,37)(15,67,73,82,62,34,38)(16,68,74,83,63,35,39)(17,69,75,84,55,36,40)(18,70,76,85,56,28,41), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126), (1,79)(3,81)(4,73)(6,75)(7,76)(9,78)(11,121)(12,122)(14,124)(15,125)(17,118)(18,119)(19,72)(20,64)(22,66)(23,67)(25,69)(26,70)(28,99)(30,92)(31,93)(33,95)(34,96)(36,98)(37,105)(38,106)(40,108)(41,100)(43,102)(44,103)(46,62)(48,55)(49,56)(51,58)(52,59)(54,61)(82,115)(84,117)(85,109)(87,111)(88,112)(90,114), (1,79)(2,80)(4,73)(5,74)(7,76)(8,77)(10,120)(12,122)(13,123)(15,125)(16,126)(18,119)(20,64)(21,65)(23,67)(24,68)(26,70)(27,71)(28,99)(29,91)(31,93)(32,94)(34,96)(35,97)(38,106)(39,107)(41,100)(42,101)(44,103)(45,104)(46,62)(47,63)(49,56)(50,57)(52,59)(53,60)(82,115)(83,116)(85,109)(86,110)(88,112)(89,113), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)>;

G:=Group( (1,112,52,93,103,122,20)(2,113,53,94,104,123,21)(3,114,54,95,105,124,22)(4,115,46,96,106,125,23)(5,116,47,97,107,126,24)(6,117,48,98,108,118,25)(7,109,49,99,100,119,26)(8,110,50,91,101,120,27)(9,111,51,92,102,121,19)(10,71,77,86,57,29,42)(11,72,78,87,58,30,43)(12,64,79,88,59,31,44)(13,65,80,89,60,32,45)(14,66,81,90,61,33,37)(15,67,73,82,62,34,38)(16,68,74,83,63,35,39)(17,69,75,84,55,36,40)(18,70,76,85,56,28,41), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126), (1,79)(3,81)(4,73)(6,75)(7,76)(9,78)(11,121)(12,122)(14,124)(15,125)(17,118)(18,119)(19,72)(20,64)(22,66)(23,67)(25,69)(26,70)(28,99)(30,92)(31,93)(33,95)(34,96)(36,98)(37,105)(38,106)(40,108)(41,100)(43,102)(44,103)(46,62)(48,55)(49,56)(51,58)(52,59)(54,61)(82,115)(84,117)(85,109)(87,111)(88,112)(90,114), (1,79)(2,80)(4,73)(5,74)(7,76)(8,77)(10,120)(12,122)(13,123)(15,125)(16,126)(18,119)(20,64)(21,65)(23,67)(24,68)(26,70)(27,71)(28,99)(29,91)(31,93)(32,94)(34,96)(35,97)(38,106)(39,107)(41,100)(42,101)(44,103)(45,104)(46,62)(47,63)(49,56)(50,57)(52,59)(53,60)(82,115)(83,116)(85,109)(86,110)(88,112)(89,113), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126) );

G=PermutationGroup([[(1,112,52,93,103,122,20),(2,113,53,94,104,123,21),(3,114,54,95,105,124,22),(4,115,46,96,106,125,23),(5,116,47,97,107,126,24),(6,117,48,98,108,118,25),(7,109,49,99,100,119,26),(8,110,50,91,101,120,27),(9,111,51,92,102,121,19),(10,71,77,86,57,29,42),(11,72,78,87,58,30,43),(12,64,79,88,59,31,44),(13,65,80,89,60,32,45),(14,66,81,90,61,33,37),(15,67,73,82,62,34,38),(16,68,74,83,63,35,39),(17,69,75,84,55,36,40),(18,70,76,85,56,28,41)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126)], [(1,79),(3,81),(4,73),(6,75),(7,76),(9,78),(11,121),(12,122),(14,124),(15,125),(17,118),(18,119),(19,72),(20,64),(22,66),(23,67),(25,69),(26,70),(28,99),(30,92),(31,93),(33,95),(34,96),(36,98),(37,105),(38,106),(40,108),(41,100),(43,102),(44,103),(46,62),(48,55),(49,56),(51,58),(52,59),(54,61),(82,115),(84,117),(85,109),(87,111),(88,112),(90,114)], [(1,79),(2,80),(4,73),(5,74),(7,76),(8,77),(10,120),(12,122),(13,123),(15,125),(16,126),(18,119),(20,64),(21,65),(23,67),(24,68),(26,70),(27,71),(28,99),(29,91),(31,93),(32,94),(34,96),(35,97),(38,106),(39,107),(41,100),(42,101),(44,103),(45,104),(46,62),(47,63),(49,56),(50,57),(52,59),(53,60),(82,115),(83,116),(85,109),(86,110),(88,112),(89,113)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126)]])

84 conjugacy classes

class 1  2 3A3B6A6B7A···7F9A···9F14A···14F21A···21L42A···42L63A···63AJ
order1233667···79···914···1421···2142···4263···63
size1311331···14···43···31···13···34···4

84 irreducible representations

dim1111113333
type++
imageC1C3C7C9C21C63A4C3.A4C7×A4C7×C3.A4
kernelC7×C3.A4C2×C42C3.A4C2×C14C2×C6C22C21C7C3C1
# reps1266123612612

Matrix representation of C7×C3.A4 in GL3(𝔽127) generated by

6400
0640
0064
,
10700
01070
00107
,
12600
01260
74991
,
12600
010
028126
,
010
5328125
11710199
G:=sub<GL(3,GF(127))| [64,0,0,0,64,0,0,0,64],[107,0,0,0,107,0,0,0,107],[126,0,74,0,126,99,0,0,1],[126,0,0,0,1,28,0,0,126],[0,53,117,1,28,101,0,125,99] >;

C7×C3.A4 in GAP, Magma, Sage, TeX

C_7\times C_3.A_4
% in TeX

G:=Group("C7xC3.A4");
// GroupNames label

G:=SmallGroup(252,10);
// by ID

G=gap.SmallGroup(252,10);
# by ID

G:=PCGroup([5,-3,-7,-3,-2,2,105,2523,4729]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^3=c^2=d^2=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C7×C3.A4 in TeX

׿
×
𝔽