metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D127, C127⋊C2, sometimes denoted D254 or Dih127 or Dih254, SmallGroup(254,1)
Series: Derived ►Chief ►Lower central ►Upper central
C127 — D127 |
Generators and relations for D127
G = < a,b | a127=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127)
(1 127)(2 126)(3 125)(4 124)(5 123)(6 122)(7 121)(8 120)(9 119)(10 118)(11 117)(12 116)(13 115)(14 114)(15 113)(16 112)(17 111)(18 110)(19 109)(20 108)(21 107)(22 106)(23 105)(24 104)(25 103)(26 102)(27 101)(28 100)(29 99)(30 98)(31 97)(32 96)(33 95)(34 94)(35 93)(36 92)(37 91)(38 90)(39 89)(40 88)(41 87)(42 86)(43 85)(44 84)(45 83)(46 82)(47 81)(48 80)(49 79)(50 78)(51 77)(52 76)(53 75)(54 74)(55 73)(56 72)(57 71)(58 70)(59 69)(60 68)(61 67)(62 66)(63 65)
G:=sub<Sym(127)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127), (1,127)(2,126)(3,125)(4,124)(5,123)(6,122)(7,121)(8,120)(9,119)(10,118)(11,117)(12,116)(13,115)(14,114)(15,113)(16,112)(17,111)(18,110)(19,109)(20,108)(21,107)(22,106)(23,105)(24,104)(25,103)(26,102)(27,101)(28,100)(29,99)(30,98)(31,97)(32,96)(33,95)(34,94)(35,93)(36,92)(37,91)(38,90)(39,89)(40,88)(41,87)(42,86)(43,85)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127), (1,127)(2,126)(3,125)(4,124)(5,123)(6,122)(7,121)(8,120)(9,119)(10,118)(11,117)(12,116)(13,115)(14,114)(15,113)(16,112)(17,111)(18,110)(19,109)(20,108)(21,107)(22,106)(23,105)(24,104)(25,103)(26,102)(27,101)(28,100)(29,99)(30,98)(31,97)(32,96)(33,95)(34,94)(35,93)(36,92)(37,91)(38,90)(39,89)(40,88)(41,87)(42,86)(43,85)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127)], [(1,127),(2,126),(3,125),(4,124),(5,123),(6,122),(7,121),(8,120),(9,119),(10,118),(11,117),(12,116),(13,115),(14,114),(15,113),(16,112),(17,111),(18,110),(19,109),(20,108),(21,107),(22,106),(23,105),(24,104),(25,103),(26,102),(27,101),(28,100),(29,99),(30,98),(31,97),(32,96),(33,95),(34,94),(35,93),(36,92),(37,91),(38,90),(39,89),(40,88),(41,87),(42,86),(43,85),(44,84),(45,83),(46,82),(47,81),(48,80),(49,79),(50,78),(51,77),(52,76),(53,75),(54,74),(55,73),(56,72),(57,71),(58,70),(59,69),(60,68),(61,67),(62,66),(63,65)]])
65 conjugacy classes
class | 1 | 2 | 127A | ··· | 127BK |
order | 1 | 2 | 127 | ··· | 127 |
size | 1 | 127 | 2 | ··· | 2 |
65 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D127 |
kernel | D127 | C127 | C1 |
# reps | 1 | 1 | 63 |
Matrix representation of D127 ►in GL2(𝔽509) generated by
270 | 508 |
1 | 0 |
270 | 508 |
112 | 239 |
G:=sub<GL(2,GF(509))| [270,1,508,0],[270,112,508,239] >;
D127 in GAP, Magma, Sage, TeX
D_{127}
% in TeX
G:=Group("D127");
// GroupNames label
G:=SmallGroup(254,1);
// by ID
G=gap.SmallGroup(254,1);
# by ID
G:=PCGroup([2,-2,-127,1009]);
// Polycyclic
G:=Group<a,b|a^127=b^2=1,b*a*b=a^-1>;
// generators/relations
Export