Copied to
clipboard

G = D4xC31order 248 = 23·31

Direct product of C31 and D4

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: D4xC31, C4:C62, C22:C62, C124:3C2, C62.6C22, (C2xC62):1C2, C2.1(C2xC62), SmallGroup(248,9)

Series: Derived Chief Lower central Upper central

C1C2 — D4xC31
C1C2C62C2xC62 — D4xC31
C1C2 — D4xC31
C1C62 — D4xC31

Generators and relations for D4xC31
 G = < a,b,c | a31=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 20 in 16 conjugacy classes, 12 normal (8 characteristic)
Quotients: C1, C2, C22, D4, C31, C62, C2xC62, D4xC31
2C2
2C2
2C62
2C62

Smallest permutation representation of D4xC31
On 124 points
Generators in S124
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)(63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93)(94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124)
(1 66 35 99)(2 67 36 100)(3 68 37 101)(4 69 38 102)(5 70 39 103)(6 71 40 104)(7 72 41 105)(8 73 42 106)(9 74 43 107)(10 75 44 108)(11 76 45 109)(12 77 46 110)(13 78 47 111)(14 79 48 112)(15 80 49 113)(16 81 50 114)(17 82 51 115)(18 83 52 116)(19 84 53 117)(20 85 54 118)(21 86 55 119)(22 87 56 120)(23 88 57 121)(24 89 58 122)(25 90 59 123)(26 91 60 124)(27 92 61 94)(28 93 62 95)(29 63 32 96)(30 64 33 97)(31 65 34 98)
(63 96)(64 97)(65 98)(66 99)(67 100)(68 101)(69 102)(70 103)(71 104)(72 105)(73 106)(74 107)(75 108)(76 109)(77 110)(78 111)(79 112)(80 113)(81 114)(82 115)(83 116)(84 117)(85 118)(86 119)(87 120)(88 121)(89 122)(90 123)(91 124)(92 94)(93 95)

G:=sub<Sym(124)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124), (1,66,35,99)(2,67,36,100)(3,68,37,101)(4,69,38,102)(5,70,39,103)(6,71,40,104)(7,72,41,105)(8,73,42,106)(9,74,43,107)(10,75,44,108)(11,76,45,109)(12,77,46,110)(13,78,47,111)(14,79,48,112)(15,80,49,113)(16,81,50,114)(17,82,51,115)(18,83,52,116)(19,84,53,117)(20,85,54,118)(21,86,55,119)(22,87,56,120)(23,88,57,121)(24,89,58,122)(25,90,59,123)(26,91,60,124)(27,92,61,94)(28,93,62,95)(29,63,32,96)(30,64,33,97)(31,65,34,98), (63,96)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,111)(79,112)(80,113)(81,114)(82,115)(83,116)(84,117)(85,118)(86,119)(87,120)(88,121)(89,122)(90,123)(91,124)(92,94)(93,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124), (1,66,35,99)(2,67,36,100)(3,68,37,101)(4,69,38,102)(5,70,39,103)(6,71,40,104)(7,72,41,105)(8,73,42,106)(9,74,43,107)(10,75,44,108)(11,76,45,109)(12,77,46,110)(13,78,47,111)(14,79,48,112)(15,80,49,113)(16,81,50,114)(17,82,51,115)(18,83,52,116)(19,84,53,117)(20,85,54,118)(21,86,55,119)(22,87,56,120)(23,88,57,121)(24,89,58,122)(25,90,59,123)(26,91,60,124)(27,92,61,94)(28,93,62,95)(29,63,32,96)(30,64,33,97)(31,65,34,98), (63,96)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,111)(79,112)(80,113)(81,114)(82,115)(83,116)(84,117)(85,118)(86,119)(87,120)(88,121)(89,122)(90,123)(91,124)(92,94)(93,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62),(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93),(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124)], [(1,66,35,99),(2,67,36,100),(3,68,37,101),(4,69,38,102),(5,70,39,103),(6,71,40,104),(7,72,41,105),(8,73,42,106),(9,74,43,107),(10,75,44,108),(11,76,45,109),(12,77,46,110),(13,78,47,111),(14,79,48,112),(15,80,49,113),(16,81,50,114),(17,82,51,115),(18,83,52,116),(19,84,53,117),(20,85,54,118),(21,86,55,119),(22,87,56,120),(23,88,57,121),(24,89,58,122),(25,90,59,123),(26,91,60,124),(27,92,61,94),(28,93,62,95),(29,63,32,96),(30,64,33,97),(31,65,34,98)], [(63,96),(64,97),(65,98),(66,99),(67,100),(68,101),(69,102),(70,103),(71,104),(72,105),(73,106),(74,107),(75,108),(76,109),(77,110),(78,111),(79,112),(80,113),(81,114),(82,115),(83,116),(84,117),(85,118),(86,119),(87,120),(88,121),(89,122),(90,123),(91,124),(92,94),(93,95)]])

D4xC31 is a maximal subgroup of   D4:D31  D4.D31  D4:2D31

155 conjugacy classes

class 1 2A2B2C 4 31A···31AD62A···62AD62AE···62CL124A···124AD
order1222431···3162···6262···62124···124
size112221···11···12···22···2

155 irreducible representations

dim11111122
type++++
imageC1C2C2C31C62C62D4D4xC31
kernelD4xC31C124C2xC62D4C4C22C31C1
# reps112303060130

Matrix representation of D4xC31 in GL2(F373) generated by

2150
0215
,
328267
37145
,
1328
0372
G:=sub<GL(2,GF(373))| [215,0,0,215],[328,371,267,45],[1,0,328,372] >;

D4xC31 in GAP, Magma, Sage, TeX

D_4\times C_{31}
% in TeX

G:=Group("D4xC31");
// GroupNames label

G:=SmallGroup(248,9);
// by ID

G=gap.SmallGroup(248,9);
# by ID

G:=PCGroup([4,-2,-2,-31,-2,1009]);
// Polycyclic

G:=Group<a,b,c|a^31=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D4xC31 in TeX

׿
x
:
Z
F
o
wr
Q
<