Copied to
clipboard

G = S3×C42order 252 = 22·32·7

Direct product of C42 and S3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C42, C6⋊C42, C427C6, C3⋊(C2×C42), C219(C2×C6), (C3×C42)⋊4C2, (C3×C6)⋊1C14, (C3×C21)⋊9C22, C322(C2×C14), SmallGroup(252,42)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C42
C1C3C21C3×C21S3×C21 — S3×C42
C3 — S3×C42
C1C42

Generators and relations for S3×C42
 G = < a,b,c | a42=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
2C3
3C22
2C6
3C6
3C6
3C14
3C14
2C21
3C2×C6
3C2×C14
2C42
3C42
3C42
3C2×C42

Smallest permutation representation of S3×C42
On 84 points
Generators in S84
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 15 29)(2 16 30)(3 17 31)(4 18 32)(5 19 33)(6 20 34)(7 21 35)(8 22 36)(9 23 37)(10 24 38)(11 25 39)(12 26 40)(13 27 41)(14 28 42)(43 71 57)(44 72 58)(45 73 59)(46 74 60)(47 75 61)(48 76 62)(49 77 63)(50 78 64)(51 79 65)(52 80 66)(53 81 67)(54 82 68)(55 83 69)(56 84 70)
(1 81)(2 82)(3 83)(4 84)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)(41 79)(42 80)

G:=sub<Sym(84)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,15,29)(2,16,30)(3,17,31)(4,18,32)(5,19,33)(6,20,34)(7,21,35)(8,22,36)(9,23,37)(10,24,38)(11,25,39)(12,26,40)(13,27,41)(14,28,42)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,81)(2,82)(3,83)(4,84)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,79)(42,80)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,15,29)(2,16,30)(3,17,31)(4,18,32)(5,19,33)(6,20,34)(7,21,35)(8,22,36)(9,23,37)(10,24,38)(11,25,39)(12,26,40)(13,27,41)(14,28,42)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,81)(2,82)(3,83)(4,84)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,79)(42,80) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,15,29),(2,16,30),(3,17,31),(4,18,32),(5,19,33),(6,20,34),(7,21,35),(8,22,36),(9,23,37),(10,24,38),(11,25,39),(12,26,40),(13,27,41),(14,28,42),(43,71,57),(44,72,58),(45,73,59),(46,74,60),(47,75,61),(48,76,62),(49,77,63),(50,78,64),(51,79,65),(52,80,66),(53,81,67),(54,82,68),(55,83,69),(56,84,70)], [(1,81),(2,82),(3,83),(4,84),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78),(41,79),(42,80)]])

126 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I7A···7F14A···14F14G···14R21A···21L21M···21AD42A···42L42M···42AD42AE···42BB
order1222333336666666667···714···1414···1421···2121···2142···4242···4242···42
size1133112221122233331···11···13···31···12···21···12···23···3

126 irreducible representations

dim11111111111122222222
type+++++
imageC1C2C2C3C6C6C7C14C14C21C42C42S3D6C3×S3S3×C6S3×C7S3×C14S3×C21S3×C42
kernelS3×C42S3×C21C3×C42S3×C14S3×C7C42S3×C6C3×S3C3×C6D6S3C6C42C21C14C7C6C3C2C1
# reps12124261261224121122661212

Matrix representation of S3×C42 in GL2(𝔽43) generated by

260
026
,
60
2436
,
2835
2815
G:=sub<GL(2,GF(43))| [26,0,0,26],[6,24,0,36],[28,28,35,15] >;

S3×C42 in GAP, Magma, Sage, TeX

S_3\times C_{42}
% in TeX

G:=Group("S3xC42");
// GroupNames label

G:=SmallGroup(252,42);
// by ID

G=gap.SmallGroup(252,42);
# by ID

G:=PCGroup([5,-2,-2,-3,-7,-3,4204]);
// Polycyclic

G:=Group<a,b,c|a^42=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C42 in TeX

׿
×
𝔽