d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C42 | 84 | 2 | S3xC42 | 252,42 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C42⋊1S3 = C2×C3⋊D21 | φ: S3/C3 → C2 ⊆ Aut C42 | 126 | C42:1S3 | 252,45 | |
C42⋊2S3 = C6×D21 | φ: S3/C3 → C2 ⊆ Aut C42 | 84 | 2 | C42:2S3 | 252,43 |
C42⋊3S3 = C14×C3⋊S3 | φ: S3/C3 → C2 ⊆ Aut C42 | 126 | C42:3S3 | 252,44 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C42.1S3 = Dic63 | φ: S3/C3 → C2 ⊆ Aut C42 | 252 | 2- | C42.1S3 | 252,5 |
C42.2S3 = D126 | φ: S3/C3 → C2 ⊆ Aut C42 | 126 | 2+ | C42.2S3 | 252,14 |
C42.3S3 = C3⋊Dic21 | φ: S3/C3 → C2 ⊆ Aut C42 | 252 | C42.3S3 | 252,24 | |
C42.4S3 = C3×Dic21 | φ: S3/C3 → C2 ⊆ Aut C42 | 84 | 2 | C42.4S3 | 252,22 |
C42.5S3 = C7×Dic9 | φ: S3/C3 → C2 ⊆ Aut C42 | 252 | 2 | C42.5S3 | 252,3 |
C42.6S3 = C14×D9 | φ: S3/C3 → C2 ⊆ Aut C42 | 126 | 2 | C42.6S3 | 252,13 |
C42.7S3 = C7×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C42 | 252 | C42.7S3 | 252,23 | |
C42.8S3 = Dic3×C21 | central extension (φ=1) | 84 | 2 | C42.8S3 | 252,21 |