Extensions 1→N→G→Q→1 with N=C42 and Q=S3

Direct product G=N×Q with N=C42 and Q=S3
dρLabelID
S3×C42842S3xC42252,42

Semidirect products G=N:Q with N=C42 and Q=S3
extensionφ:Q→Aut NdρLabelID
C421S3 = C2×C3⋊D21φ: S3/C3C2 ⊆ Aut C42126C42:1S3252,45
C422S3 = C6×D21φ: S3/C3C2 ⊆ Aut C42842C42:2S3252,43
C423S3 = C14×C3⋊S3φ: S3/C3C2 ⊆ Aut C42126C42:3S3252,44

Non-split extensions G=N.Q with N=C42 and Q=S3
extensionφ:Q→Aut NdρLabelID
C42.1S3 = Dic63φ: S3/C3C2 ⊆ Aut C422522-C42.1S3252,5
C42.2S3 = D126φ: S3/C3C2 ⊆ Aut C421262+C42.2S3252,14
C42.3S3 = C3⋊Dic21φ: S3/C3C2 ⊆ Aut C42252C42.3S3252,24
C42.4S3 = C3×Dic21φ: S3/C3C2 ⊆ Aut C42842C42.4S3252,22
C42.5S3 = C7×Dic9φ: S3/C3C2 ⊆ Aut C422522C42.5S3252,3
C42.6S3 = C14×D9φ: S3/C3C2 ⊆ Aut C421262C42.6S3252,13
C42.7S3 = C7×C3⋊Dic3φ: S3/C3C2 ⊆ Aut C42252C42.7S3252,23
C42.8S3 = Dic3×C21central extension (φ=1)842C42.8S3252,21

׿
×
𝔽