Copied to
clipboard

G = C14×D9order 252 = 22·32·7

Direct product of C14 and D9

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C14×D9, C18⋊C14, C1262C2, C42.6S3, C633C22, C21.3D6, C9⋊(C2×C14), C3.(S3×C14), C6.2(S3×C7), SmallGroup(252,13)

Series: Derived Chief Lower central Upper central

C1C9 — C14×D9
C1C3C9C63C7×D9 — C14×D9
C9 — C14×D9
C1C14

Generators and relations for C14×D9
 G = < a,b,c | a14=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

9C2
9C2
9C22
3S3
3S3
9C14
9C14
3D6
9C2×C14
3S3×C7
3S3×C7
3S3×C14

Smallest permutation representation of C14×D9
On 126 points
Generators in S126
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 124 110 57 95 35 55 79 16)(2 125 111 58 96 36 56 80 17)(3 126 112 59 97 37 43 81 18)(4 113 99 60 98 38 44 82 19)(5 114 100 61 85 39 45 83 20)(6 115 101 62 86 40 46 84 21)(7 116 102 63 87 41 47 71 22)(8 117 103 64 88 42 48 72 23)(9 118 104 65 89 29 49 73 24)(10 119 105 66 90 30 50 74 25)(11 120 106 67 91 31 51 75 26)(12 121 107 68 92 32 52 76 27)(13 122 108 69 93 33 53 77 28)(14 123 109 70 94 34 54 78 15)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 15)(29 65)(30 66)(31 67)(32 68)(33 69)(34 70)(35 57)(36 58)(37 59)(38 60)(39 61)(40 62)(41 63)(42 64)(43 112)(44 99)(45 100)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(71 116)(72 117)(73 118)(74 119)(75 120)(76 121)(77 122)(78 123)(79 124)(80 125)(81 126)(82 113)(83 114)(84 115)

G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,124,110,57,95,35,55,79,16)(2,125,111,58,96,36,56,80,17)(3,126,112,59,97,37,43,81,18)(4,113,99,60,98,38,44,82,19)(5,114,100,61,85,39,45,83,20)(6,115,101,62,86,40,46,84,21)(7,116,102,63,87,41,47,71,22)(8,117,103,64,88,42,48,72,23)(9,118,104,65,89,29,49,73,24)(10,119,105,66,90,30,50,74,25)(11,120,106,67,91,31,51,75,26)(12,121,107,68,92,32,52,76,27)(13,122,108,69,93,33,53,77,28)(14,123,109,70,94,34,54,78,15), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,15)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,63)(42,64)(43,112)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,113)(83,114)(84,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,124,110,57,95,35,55,79,16)(2,125,111,58,96,36,56,80,17)(3,126,112,59,97,37,43,81,18)(4,113,99,60,98,38,44,82,19)(5,114,100,61,85,39,45,83,20)(6,115,101,62,86,40,46,84,21)(7,116,102,63,87,41,47,71,22)(8,117,103,64,88,42,48,72,23)(9,118,104,65,89,29,49,73,24)(10,119,105,66,90,30,50,74,25)(11,120,106,67,91,31,51,75,26)(12,121,107,68,92,32,52,76,27)(13,122,108,69,93,33,53,77,28)(14,123,109,70,94,34,54,78,15), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,15)(29,65)(30,66)(31,67)(32,68)(33,69)(34,70)(35,57)(36,58)(37,59)(38,60)(39,61)(40,62)(41,63)(42,64)(43,112)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,113)(83,114)(84,115) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,124,110,57,95,35,55,79,16),(2,125,111,58,96,36,56,80,17),(3,126,112,59,97,37,43,81,18),(4,113,99,60,98,38,44,82,19),(5,114,100,61,85,39,45,83,20),(6,115,101,62,86,40,46,84,21),(7,116,102,63,87,41,47,71,22),(8,117,103,64,88,42,48,72,23),(9,118,104,65,89,29,49,73,24),(10,119,105,66,90,30,50,74,25),(11,120,106,67,91,31,51,75,26),(12,121,107,68,92,32,52,76,27),(13,122,108,69,93,33,53,77,28),(14,123,109,70,94,34,54,78,15)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,15),(29,65),(30,66),(31,67),(32,68),(33,69),(34,70),(35,57),(36,58),(37,59),(38,60),(39,61),(40,62),(41,63),(42,64),(43,112),(44,99),(45,100),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(71,116),(72,117),(73,118),(74,119),(75,120),(76,121),(77,122),(78,123),(79,124),(80,125),(81,126),(82,113),(83,114),(84,115)]])

84 conjugacy classes

class 1 2A2B2C 3  6 7A···7F9A9B9C14A···14F14G···14R18A18B18C21A···21F42A···42F63A···63R126A···126R
order1222367···799914···1414···1418181821···2142···4263···63126···126
size1199221···12221···19···92222···22···22···22···2

84 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C7C14C14S3D6D9D18S3×C7S3×C14C7×D9C14×D9
kernelC14×D9C7×D9C126D18D9C18C42C21C14C7C6C3C2C1
# reps12161261133661818

Matrix representation of C14×D9 in GL3(𝔽127) generated by

12600
020
002
,
100
0922
010531
,
12600
031118
02296
G:=sub<GL(3,GF(127))| [126,0,0,0,2,0,0,0,2],[1,0,0,0,9,105,0,22,31],[126,0,0,0,31,22,0,118,96] >;

C14×D9 in GAP, Magma, Sage, TeX

C_{14}\times D_9
% in TeX

G:=Group("C14xD9");
// GroupNames label

G:=SmallGroup(252,13);
// by ID

G=gap.SmallGroup(252,13);
# by ID

G:=PCGroup([5,-2,-2,-7,-3,-3,2803,138,4204]);
// Polycyclic

G:=Group<a,b,c|a^14=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C14×D9 in TeX

׿
×
𝔽