Copied to
clipboard

G = C2×C17⋊C8order 272 = 24·17

Direct product of C2 and C17⋊C8

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C17⋊C8, C34⋊C8, D17⋊C8, D34.C4, C17⋊(C2×C8), C17⋊C4.2C4, D17.(C2×C4), C17⋊C4.C22, (C2×C17⋊C4).2C2, SmallGroup(272,51)

Series: Derived Chief Lower central Upper central

C1C17 — C2×C17⋊C8
C1C17D17C17⋊C4C17⋊C8 — C2×C17⋊C8
C17 — C2×C17⋊C8
C1C2

Generators and relations for C2×C17⋊C8
 G = < a,b,c | a2=b17=c8=1, ab=ba, ac=ca, cbc-1=b2 >

17C2
17C2
17C4
17C22
17C4
17C8
17C2×C4
17C8
17C2×C8

Character table of C2×C17⋊C8

 class 12A2B2C4A4B4C4D8A8B8C8D8E8F8G8H17A17B34A34B
 size 1117171717171717171717171717178888
ρ111111111111111111111    trivial
ρ211111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ31-11-1-111-11-1-1-1-111111-1-1    linear of order 2
ρ41-11-1-111-1-11111-1-1-111-1-1    linear of order 2
ρ51-11-11-1-11iii-i-i-i-ii11-1-1    linear of order 4
ρ61111-1-1-1-1i-i-iii-i-ii1111    linear of order 4
ρ71-11-11-1-11-i-i-iiiii-i11-1-1    linear of order 4
ρ81111-1-1-1-1-iii-i-iii-i1111    linear of order 4
ρ911-1-1i-ii-iζ87ζ8ζ85ζ83ζ87ζ8ζ85ζ831111    linear of order 8
ρ101-1-11-i-iiiζ87ζ85ζ8ζ87ζ83ζ8ζ85ζ8311-1-1    linear of order 8
ρ111-1-11ii-i-iζ85ζ87ζ83ζ85ζ8ζ83ζ87ζ811-1-1    linear of order 8
ρ1211-1-1-ii-iiζ85ζ83ζ87ζ8ζ85ζ83ζ87ζ81111    linear of order 8
ρ131-1-11ii-i-iζ8ζ83ζ87ζ8ζ85ζ87ζ83ζ8511-1-1    linear of order 8
ρ1411-1-1i-ii-iζ83ζ85ζ8ζ87ζ83ζ85ζ8ζ871111    linear of order 8
ρ1511-1-1-ii-iiζ8ζ87ζ83ζ85ζ8ζ87ζ83ζ851111    linear of order 8
ρ161-1-11-i-iiiζ83ζ8ζ85ζ83ζ87ζ85ζ8ζ8711-1-1    linear of order 8
ρ178-800000000000000-1+17/2-1-17/21+17/21-17/2    orthogonal faithful
ρ188-800000000000000-1-17/2-1+17/21-17/21+17/2    orthogonal faithful
ρ198800000000000000-1-17/2-1+17/2-1+17/2-1-17/2    orthogonal lifted from C17⋊C8
ρ208800000000000000-1+17/2-1-17/2-1-17/2-1+17/2    orthogonal lifted from C17⋊C8

Smallest permutation representation of C2×C17⋊C8
On 34 points
Generators in S34
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)
(2 10 14 16 17 9 5 3)(4 11 6 12 15 8 13 7)(19 27 31 33 34 26 22 20)(21 28 23 29 32 25 30 24)

G:=sub<Sym(34)| (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34), (2,10,14,16,17,9,5,3)(4,11,6,12,15,8,13,7)(19,27,31,33,34,26,22,20)(21,28,23,29,32,25,30,24)>;

G:=Group( (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34), (2,10,14,16,17,9,5,3)(4,11,6,12,15,8,13,7)(19,27,31,33,34,26,22,20)(21,28,23,29,32,25,30,24) );

G=PermutationGroup([[(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)], [(2,10,14,16,17,9,5,3),(4,11,6,12,15,8,13,7),(19,27,31,33,34,26,22,20),(21,28,23,29,32,25,30,24)]])

Matrix representation of C2×C17⋊C8 in GL8(𝔽137)

1360000000
0136000000
0013600000
0001360000
0000136000
0000013600
0000001360
0000000136
,
2122115136135114136
3122115136135114136
2222115136135114136
2123115136135114136
2122116136135114136
21221150135114136
2122115136136114136
2122115136135115136
,
01000000
00010000
00000100
00000001
2011411643117145116
6729564941144192
43194659311542116
1351361152212231

G:=sub<GL(8,GF(137))| [136,0,0,0,0,0,0,0,0,136,0,0,0,0,0,0,0,0,136,0,0,0,0,0,0,0,0,136,0,0,0,0,0,0,0,0,136,0,0,0,0,0,0,0,0,136,0,0,0,0,0,0,0,0,136,0,0,0,0,0,0,0,0,136],[2,3,2,2,2,2,2,2,1,1,2,1,1,1,1,1,22,22,22,23,22,22,22,22,115,115,115,115,116,115,115,115,136,136,136,136,136,0,136,136,135,135,135,135,135,135,136,135,114,114,114,114,114,114,114,115,136,136,136,136,136,136,136,136],[0,0,0,0,20,67,43,135,1,0,0,0,114,2,1,136,0,0,0,0,116,95,94,115,0,1,0,0,43,64,65,22,0,0,0,0,117,94,93,1,0,0,1,0,1,114,115,2,0,0,0,0,45,41,42,23,0,0,0,1,116,92,116,1] >;

C2×C17⋊C8 in GAP, Magma, Sage, TeX

C_2\times C_{17}\rtimes C_8
% in TeX

G:=Group("C2xC17:C8");
// GroupNames label

G:=SmallGroup(272,51);
// by ID

G=gap.SmallGroup(272,51);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,20,42,3604,1314,819]);
// Polycyclic

G:=Group<a,b,c|a^2=b^17=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C2×C17⋊C8 in TeX
Character table of C2×C17⋊C8 in TeX

׿
×
𝔽