Copied to
clipboard

G = D137order 274 = 2·137

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D137, C137⋊C2, sometimes denoted D274 or Dih137 or Dih274, SmallGroup(274,1)

Series: Derived Chief Lower central Upper central

C1C137 — D137
C1C137 — D137
C137 — D137
C1

Generators and relations for D137
 G = < a,b | a137=b2=1, bab=a-1 >

137C2

Smallest permutation representation of D137
On 137 points: primitive
Generators in S137
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137)
(1 137)(2 136)(3 135)(4 134)(5 133)(6 132)(7 131)(8 130)(9 129)(10 128)(11 127)(12 126)(13 125)(14 124)(15 123)(16 122)(17 121)(18 120)(19 119)(20 118)(21 117)(22 116)(23 115)(24 114)(25 113)(26 112)(27 111)(28 110)(29 109)(30 108)(31 107)(32 106)(33 105)(34 104)(35 103)(36 102)(37 101)(38 100)(39 99)(40 98)(41 97)(42 96)(43 95)(44 94)(45 93)(46 92)(47 91)(48 90)(49 89)(50 88)(51 87)(52 86)(53 85)(54 84)(55 83)(56 82)(57 81)(58 80)(59 79)(60 78)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)

G:=sub<Sym(137)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137), (1,137)(2,136)(3,135)(4,134)(5,133)(6,132)(7,131)(8,130)(9,129)(10,128)(11,127)(12,126)(13,125)(14,124)(15,123)(16,122)(17,121)(18,120)(19,119)(20,118)(21,117)(22,116)(23,115)(24,114)(25,113)(26,112)(27,111)(28,110)(29,109)(30,108)(31,107)(32,106)(33,105)(34,104)(35,103)(36,102)(37,101)(38,100)(39,99)(40,98)(41,97)(42,96)(43,95)(44,94)(45,93)(46,92)(47,91)(48,90)(49,89)(50,88)(51,87)(52,86)(53,85)(54,84)(55,83)(56,82)(57,81)(58,80)(59,79)(60,78)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137), (1,137)(2,136)(3,135)(4,134)(5,133)(6,132)(7,131)(8,130)(9,129)(10,128)(11,127)(12,126)(13,125)(14,124)(15,123)(16,122)(17,121)(18,120)(19,119)(20,118)(21,117)(22,116)(23,115)(24,114)(25,113)(26,112)(27,111)(28,110)(29,109)(30,108)(31,107)(32,106)(33,105)(34,104)(35,103)(36,102)(37,101)(38,100)(39,99)(40,98)(41,97)(42,96)(43,95)(44,94)(45,93)(46,92)(47,91)(48,90)(49,89)(50,88)(51,87)(52,86)(53,85)(54,84)(55,83)(56,82)(57,81)(58,80)(59,79)(60,78)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137)], [(1,137),(2,136),(3,135),(4,134),(5,133),(6,132),(7,131),(8,130),(9,129),(10,128),(11,127),(12,126),(13,125),(14,124),(15,123),(16,122),(17,121),(18,120),(19,119),(20,118),(21,117),(22,116),(23,115),(24,114),(25,113),(26,112),(27,111),(28,110),(29,109),(30,108),(31,107),(32,106),(33,105),(34,104),(35,103),(36,102),(37,101),(38,100),(39,99),(40,98),(41,97),(42,96),(43,95),(44,94),(45,93),(46,92),(47,91),(48,90),(49,89),(50,88),(51,87),(52,86),(53,85),(54,84),(55,83),(56,82),(57,81),(58,80),(59,79),(60,78),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70)]])

70 conjugacy classes

class 1  2 137A···137BP
order12137···137
size11372···2

70 irreducible representations

dim112
type+++
imageC1C2D137
kernelD137C137C1
# reps1168

Matrix representation of D137 in GL2(𝔽823) generated by

521822
10
,
521822
673302
G:=sub<GL(2,GF(823))| [521,1,822,0],[521,673,822,302] >;

D137 in GAP, Magma, Sage, TeX

D_{137}
% in TeX

G:=Group("D137");
// GroupNames label

G:=SmallGroup(274,1);
// by ID

G=gap.SmallGroup(274,1);
# by ID

G:=PCGroup([2,-2,-137,1089]);
// Polycyclic

G:=Group<a,b|a^137=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D137 in TeX

׿
×
𝔽