metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D139, C139⋊C2, sometimes denoted D278 or Dih139 or Dih278, SmallGroup(278,1)
Series: Derived ►Chief ►Lower central ►Upper central
C139 — D139 |
Generators and relations for D139
G = < a,b | a139=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139)
(1 139)(2 138)(3 137)(4 136)(5 135)(6 134)(7 133)(8 132)(9 131)(10 130)(11 129)(12 128)(13 127)(14 126)(15 125)(16 124)(17 123)(18 122)(19 121)(20 120)(21 119)(22 118)(23 117)(24 116)(25 115)(26 114)(27 113)(28 112)(29 111)(30 110)(31 109)(32 108)(33 107)(34 106)(35 105)(36 104)(37 103)(38 102)(39 101)(40 100)(41 99)(42 98)(43 97)(44 96)(45 95)(46 94)(47 93)(48 92)(49 91)(50 90)(51 89)(52 88)(53 87)(54 86)(55 85)(56 84)(57 83)(58 82)(59 81)(60 80)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)
G:=sub<Sym(139)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139), (1,139)(2,138)(3,137)(4,136)(5,135)(6,134)(7,133)(8,132)(9,131)(10,130)(11,129)(12,128)(13,127)(14,126)(15,125)(16,124)(17,123)(18,122)(19,121)(20,120)(21,119)(22,118)(23,117)(24,116)(25,115)(26,114)(27,113)(28,112)(29,111)(30,110)(31,109)(32,108)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,100)(41,99)(42,98)(43,97)(44,96)(45,95)(46,94)(47,93)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139), (1,139)(2,138)(3,137)(4,136)(5,135)(6,134)(7,133)(8,132)(9,131)(10,130)(11,129)(12,128)(13,127)(14,126)(15,125)(16,124)(17,123)(18,122)(19,121)(20,120)(21,119)(22,118)(23,117)(24,116)(25,115)(26,114)(27,113)(28,112)(29,111)(30,110)(31,109)(32,108)(33,107)(34,106)(35,105)(36,104)(37,103)(38,102)(39,101)(40,100)(41,99)(42,98)(43,97)(44,96)(45,95)(46,94)(47,93)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139)], [(1,139),(2,138),(3,137),(4,136),(5,135),(6,134),(7,133),(8,132),(9,131),(10,130),(11,129),(12,128),(13,127),(14,126),(15,125),(16,124),(17,123),(18,122),(19,121),(20,120),(21,119),(22,118),(23,117),(24,116),(25,115),(26,114),(27,113),(28,112),(29,111),(30,110),(31,109),(32,108),(33,107),(34,106),(35,105),(36,104),(37,103),(38,102),(39,101),(40,100),(41,99),(42,98),(43,97),(44,96),(45,95),(46,94),(47,93),(48,92),(49,91),(50,90),(51,89),(52,88),(53,87),(54,86),(55,85),(56,84),(57,83),(58,82),(59,81),(60,80),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71)]])
71 conjugacy classes
class | 1 | 2 | 139A | ··· | 139BQ |
order | 1 | 2 | 139 | ··· | 139 |
size | 1 | 139 | 2 | ··· | 2 |
71 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D139 |
kernel | D139 | C139 | C1 |
# reps | 1 | 1 | 69 |
Matrix representation of D139 ►in GL2(𝔽557) generated by
172 | 556 |
41 | 492 |
511 | 249 |
421 | 46 |
G:=sub<GL(2,GF(557))| [172,41,556,492],[511,421,249,46] >;
D139 in GAP, Magma, Sage, TeX
D_{139}
% in TeX
G:=Group("D139");
// GroupNames label
G:=SmallGroup(278,1);
// by ID
G=gap.SmallGroup(278,1);
# by ID
G:=PCGroup([2,-2,-139,1105]);
// Polycyclic
G:=Group<a,b|a^139=b^2=1,b*a*b=a^-1>;
// generators/relations
Export