Extensions 1→N→G→Q→1 with N=C3 and Q=C3×D15

Direct product G=N×Q with N=C3 and Q=C3×D15
dρLabelID
C32×D1590C3^2xD15270,25

Semidirect products G=N:Q with N=C3 and Q=C3×D15
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×D15) = C3×C3⋊D15φ: C3×D15/C3×C15C2 ⊆ Aut C390C3:(C3xD15)270,27

Non-split extensions G=N.Q with N=C3 and Q=C3×D15
extensionφ:Q→Aut NdρLabelID
C3.1(C3×D15) = C3×D45φ: C3×D15/C3×C15C2 ⊆ Aut C3902C3.1(C3xD15)270,12
C3.2(C3×D15) = He3⋊D5φ: C3×D15/C3×C15C2 ⊆ Aut C3456+C3.2(C3xD15)270,14
C3.3(C3×D15) = D45⋊C3φ: C3×D15/C3×C15C2 ⊆ Aut C3456+C3.3(C3xD15)270,15
C3.4(C3×D15) = C9×D15central extension (φ=1)902C3.4(C3xD15)270,13

׿
×
𝔽