Copied to
clipboard

G = He3⋊D5order 270 = 2·33·5

1st semidirect product of He3 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial

Aliases: He31D5, C321D15, C3⋊D15⋊C3, C5⋊(C32⋊C6), C32⋊(C3×D5), (C3×C15)⋊1S3, (C3×C15)⋊1C6, (C5×He3)⋊1C2, C15.2(C3×S3), C3.2(C3×D15), SmallGroup(270,14)

Series: Derived Chief Lower central Upper central

C1C3×C15 — He3⋊D5
C1C5C15C3×C15C5×He3 — He3⋊D5
C3×C15 — He3⋊D5
C1

Generators and relations for He3⋊D5
 G = < a,b,c,d,e | a3=b3=c3=d5=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ce=ec, ede=d-1 >

45C2
3C3
3C3
6C3
15S3
45C6
45S3
2C32
9D5
3C15
3C15
6C15
5C3⋊S3
15C3×S3
3D15
9C3×D5
9D15
2C3×C15
5C32⋊C6
3C3×D15

Smallest permutation representation of He3⋊D5
On 45 points
Generators in S45
(1 34 19)(2 35 20)(3 31 16)(4 32 17)(5 33 18)(6 36 21)(7 37 22)(8 38 23)(9 39 24)(10 40 25)(11 41 26)(12 42 27)(13 43 28)(14 44 29)(15 45 30)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)
(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)
(1 5)(2 4)(6 11)(7 15)(8 14)(9 13)(10 12)(16 31)(17 35)(18 34)(19 33)(20 32)(21 41)(22 45)(23 44)(24 43)(25 42)(26 36)(27 40)(28 39)(29 38)(30 37)

G:=sub<Sym(45)| (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,5)(2,4)(6,11)(7,15)(8,14)(9,13)(10,12)(16,31)(17,35)(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)(30,37)>;

G:=Group( (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,5)(2,4)(6,11)(7,15)(8,14)(9,13)(10,12)(16,31)(17,35)(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)(30,37) );

G=PermutationGroup([[(1,34,19),(2,35,20),(3,31,16),(4,32,17),(5,33,18),(6,36,21),(7,37,22),(8,38,23),(9,39,24),(10,40,25),(11,41,26),(12,42,27),(13,43,28),(14,44,29),(15,45,30)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40)], [(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45)], [(1,5),(2,4),(6,11),(7,15),(8,14),(9,13),(10,12),(16,31),(17,35),(18,34),(19,33),(20,32),(21,41),(22,45),(23,44),(24,43),(25,42),(26,36),(27,40),(28,39),(29,38),(30,37)]])

32 conjugacy classes

class 1  2 3A3B3C3D3E3F5A5B6A6B15A15B15C15D15E···15T
order1233333355661515151515···15
size14523366622454522226···6

32 irreducible representations

dim111122222266
type+++++++
imageC1C2C3C6S3D5C3×S3C3×D5D15C3×D15C32⋊C6He3⋊D5
kernelHe3⋊D5C5×He3C3⋊D15C3×C15C3×C15He3C15C32C32C3C5C1
# reps112212244814

Matrix representation of He3⋊D5 in GL6(𝔽31)

14302500
2166600
00122810
0032001
0020300
00281200
,
1950000
23110000
16016500
1515261400
15000165
1616002614
,
100000
010000
523142600
302951600
13000165
2618002614
,
1310000
17300000
2800100
33301200
300001
2828003012
,
30300000
010000
000001
000010
000100
001000

G:=sub<GL(6,GF(31))| [14,2,0,0,0,0,3,16,0,0,0,0,0,6,12,3,20,28,25,6,28,20,3,12,0,0,1,0,0,0,0,0,0,1,0,0],[19,23,16,15,15,16,5,11,0,15,0,16,0,0,16,26,0,0,0,0,5,14,0,0,0,0,0,0,16,26,0,0,0,0,5,14],[1,0,5,30,1,26,0,1,23,29,30,18,0,0,14,5,0,0,0,0,26,16,0,0,0,0,0,0,16,26,0,0,0,0,5,14],[13,17,28,3,3,28,1,30,0,3,0,28,0,0,0,30,0,0,0,0,1,12,0,0,0,0,0,0,0,30,0,0,0,0,1,12],[30,0,0,0,0,0,30,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;

He3⋊D5 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes D_5
% in TeX

G:=Group("He3:D5");
// GroupNames label

G:=SmallGroup(270,14);
// by ID

G=gap.SmallGroup(270,14);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-5,182,187,723,5404]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^5=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of He3⋊D5 in TeX

׿
×
𝔽