extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1(C2xC12) = C3xC23.6D6 | φ: C2xC12/C6 → C22 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).1(C2xC12) | 288,240 |
(C2xC6).2(C2xC12) = C3xC12.46D4 | φ: C2xC12/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).2(C2xC12) | 288,257 |
(C2xC6).3(C2xC12) = C3xC12.47D4 | φ: C2xC12/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).3(C2xC12) | 288,258 |
(C2xC6).4(C2xC12) = C3xC23.16D6 | φ: C2xC12/C6 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).4(C2xC12) | 288,648 |
(C2xC6).5(C2xC12) = C3xS3xM4(2) | φ: C2xC12/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).5(C2xC12) | 288,677 |
(C2xC6).6(C2xC12) = C3xD12.C4 | φ: C2xC12/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).6(C2xC12) | 288,678 |
(C2xC6).7(C2xC12) = C3xD4.Dic3 | φ: C2xC12/C6 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).7(C2xC12) | 288,719 |
(C2xC6).8(C2xC12) = C2xC4xC3.A4 | φ: C2xC12/C2xC4 → C3 ⊆ Aut C2xC6 | 72 | | (C2xC6).8(C2xC12) | 288,343 |
(C2xC6).9(C2xC12) = D4xC36 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).9(C2xC12) | 288,168 |
(C2xC6).10(C2xC12) = C9xC8oD4 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 144 | 2 | (C2xC6).10(C2xC12) | 288,181 |
(C2xC6).11(C2xC12) = C32xC8oD4 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).11(C2xC12) | 288,828 |
(C2xC6).12(C2xC12) = Dic3xC24 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).12(C2xC12) | 288,247 |
(C2xC6).13(C2xC12) = C3xDic3:C8 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).13(C2xC12) | 288,248 |
(C2xC6).14(C2xC12) = C3xC24:C4 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).14(C2xC12) | 288,249 |
(C2xC6).15(C2xC12) = C3xD6:C8 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).15(C2xC12) | 288,254 |
(C2xC6).16(C2xC12) = C3xC6.C42 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).16(C2xC12) | 288,265 |
(C2xC6).17(C2xC12) = S3xC2xC24 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).17(C2xC12) | 288,670 |
(C2xC6).18(C2xC12) = C6xC8:S3 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).18(C2xC12) | 288,671 |
(C2xC6).19(C2xC12) = C3xC8oD12 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 48 | 2 | (C2xC6).19(C2xC12) | 288,672 |
(C2xC6).20(C2xC12) = Dic3xC2xC12 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).20(C2xC12) | 288,693 |
(C2xC6).21(C2xC12) = C6xDic3:C4 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).21(C2xC12) | 288,694 |
(C2xC6).22(C2xC12) = C6xD6:C4 | φ: C2xC12/C12 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).22(C2xC12) | 288,698 |
(C2xC6).23(C2xC12) = C9xC23:C4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).23(C2xC12) | 288,49 |
(C2xC6).24(C2xC12) = C9xC4.D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).24(C2xC12) | 288,50 |
(C2xC6).25(C2xC12) = C9xC4.10D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | 4 | (C2xC6).25(C2xC12) | 288,51 |
(C2xC6).26(C2xC12) = C22:C4xC18 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).26(C2xC12) | 288,165 |
(C2xC6).27(C2xC12) = C9xC42:C2 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).27(C2xC12) | 288,167 |
(C2xC6).28(C2xC12) = M4(2)xC18 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).28(C2xC12) | 288,180 |
(C2xC6).29(C2xC12) = C32xC23:C4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).29(C2xC12) | 288,317 |
(C2xC6).30(C2xC12) = C32xC4.D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).30(C2xC12) | 288,318 |
(C2xC6).31(C2xC12) = C32xC4.10D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).31(C2xC12) | 288,319 |
(C2xC6).32(C2xC12) = C32xC42:C2 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).32(C2xC12) | 288,814 |
(C2xC6).33(C2xC12) = M4(2)xC3xC6 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).33(C2xC12) | 288,827 |
(C2xC6).34(C2xC12) = C12xC3:C8 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).34(C2xC12) | 288,236 |
(C2xC6).35(C2xC12) = C3xC42.S3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).35(C2xC12) | 288,237 |
(C2xC6).36(C2xC12) = C3xC12:C8 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).36(C2xC12) | 288,238 |
(C2xC6).37(C2xC12) = C3xC12.55D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).37(C2xC12) | 288,264 |
(C2xC6).38(C2xC12) = C3xC12.D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).38(C2xC12) | 288,267 |
(C2xC6).39(C2xC12) = C3xC23.7D6 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).39(C2xC12) | 288,268 |
(C2xC6).40(C2xC12) = C3xC12.10D4 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).40(C2xC12) | 288,270 |
(C2xC6).41(C2xC12) = C2xC6xC3:C8 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).41(C2xC12) | 288,691 |
(C2xC6).42(C2xC12) = C6xC4.Dic3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).42(C2xC12) | 288,692 |
(C2xC6).43(C2xC12) = C6xC4:Dic3 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).43(C2xC12) | 288,696 |
(C2xC6).44(C2xC12) = C3xC23.26D6 | φ: C2xC12/C2xC6 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).44(C2xC12) | 288,697 |
(C2xC6).45(C2xC12) = C9xC2.C42 | central extension (φ=1) | 288 | | (C2xC6).45(C2xC12) | 288,45 |
(C2xC6).46(C2xC12) = C9xC8:C4 | central extension (φ=1) | 288 | | (C2xC6).46(C2xC12) | 288,47 |
(C2xC6).47(C2xC12) = C9xC22:C8 | central extension (φ=1) | 144 | | (C2xC6).47(C2xC12) | 288,48 |
(C2xC6).48(C2xC12) = C9xC4:C8 | central extension (φ=1) | 288 | | (C2xC6).48(C2xC12) | 288,55 |
(C2xC6).49(C2xC12) = C4:C4xC18 | central extension (φ=1) | 288 | | (C2xC6).49(C2xC12) | 288,166 |
(C2xC6).50(C2xC12) = C32xC2.C42 | central extension (φ=1) | 288 | | (C2xC6).50(C2xC12) | 288,313 |
(C2xC6).51(C2xC12) = C32xC8:C4 | central extension (φ=1) | 288 | | (C2xC6).51(C2xC12) | 288,315 |
(C2xC6).52(C2xC12) = C32xC22:C8 | central extension (φ=1) | 144 | | (C2xC6).52(C2xC12) | 288,316 |
(C2xC6).53(C2xC12) = C32xC4:C8 | central extension (φ=1) | 288 | | (C2xC6).53(C2xC12) | 288,323 |
(C2xC6).54(C2xC12) = C4:C4xC3xC6 | central extension (φ=1) | 288 | | (C2xC6).54(C2xC12) | 288,813 |