Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C2xC12

Direct product G=NxQ with N=C2xC6 and Q=C2xC12
dρLabelID
C22xC6xC12288C2^2xC6xC12288,1018

Semidirect products G=N:Q with N=C2xC6 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
(C2xC6):1(C2xC12) = C4xS3xA4φ: C2xC12/C4C6 ⊆ Aut C2xC6366(C2xC6):1(C2xC12)288,919
(C2xC6):2(C2xC12) = C2xDic3xA4φ: C2xC12/C22C6 ⊆ Aut C2xC672(C2xC6):2(C2xC12)288,927
(C2xC6):3(C2xC12) = C3xS3xC22:C4φ: C2xC12/C6C22 ⊆ Aut C2xC648(C2xC6):3(C2xC12)288,651
(C2xC6):4(C2xC12) = C3xDic3:4D4φ: C2xC12/C6C22 ⊆ Aut C2xC648(C2xC6):4(C2xC12)288,652
(C2xC6):5(C2xC12) = C3xD4xDic3φ: C2xC12/C6C22 ⊆ Aut C2xC648(C2xC6):5(C2xC12)288,705
(C2xC6):6(C2xC12) = A4xC2xC12φ: C2xC12/C2xC4C3 ⊆ Aut C2xC672(C2xC6):6(C2xC12)288,979
(C2xC6):7(C2xC12) = D4xC3xC12φ: C2xC12/C12C2 ⊆ Aut C2xC6144(C2xC6):7(C2xC12)288,815
(C2xC6):8(C2xC12) = C12xC3:D4φ: C2xC12/C12C2 ⊆ Aut C2xC648(C2xC6):8(C2xC12)288,699
(C2xC6):9(C2xC12) = S3xC22xC12φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6):9(C2xC12)288,989
(C2xC6):10(C2xC12) = C22:C4xC3xC6φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6144(C2xC6):10(C2xC12)288,812
(C2xC6):11(C2xC12) = C6xC6.D4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC648(C2xC6):11(C2xC12)288,723
(C2xC6):12(C2xC12) = Dic3xC22xC6φ: C2xC12/C2xC6C2 ⊆ Aut C2xC696(C2xC6):12(C2xC12)288,1001

Non-split extensions G=N.Q with N=C2xC6 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
(C2xC6).1(C2xC12) = C3xC23.6D6φ: C2xC12/C6C22 ⊆ Aut C2xC6244(C2xC6).1(C2xC12)288,240
(C2xC6).2(C2xC12) = C3xC12.46D4φ: C2xC12/C6C22 ⊆ Aut C2xC6484(C2xC6).2(C2xC12)288,257
(C2xC6).3(C2xC12) = C3xC12.47D4φ: C2xC12/C6C22 ⊆ Aut C2xC6484(C2xC6).3(C2xC12)288,258
(C2xC6).4(C2xC12) = C3xC23.16D6φ: C2xC12/C6C22 ⊆ Aut C2xC648(C2xC6).4(C2xC12)288,648
(C2xC6).5(C2xC12) = C3xS3xM4(2)φ: C2xC12/C6C22 ⊆ Aut C2xC6484(C2xC6).5(C2xC12)288,677
(C2xC6).6(C2xC12) = C3xD12.C4φ: C2xC12/C6C22 ⊆ Aut C2xC6484(C2xC6).6(C2xC12)288,678
(C2xC6).7(C2xC12) = C3xD4.Dic3φ: C2xC12/C6C22 ⊆ Aut C2xC6484(C2xC6).7(C2xC12)288,719
(C2xC6).8(C2xC12) = C2xC4xC3.A4φ: C2xC12/C2xC4C3 ⊆ Aut C2xC672(C2xC6).8(C2xC12)288,343
(C2xC6).9(C2xC12) = D4xC36φ: C2xC12/C12C2 ⊆ Aut C2xC6144(C2xC6).9(C2xC12)288,168
(C2xC6).10(C2xC12) = C9xC8oD4φ: C2xC12/C12C2 ⊆ Aut C2xC61442(C2xC6).10(C2xC12)288,181
(C2xC6).11(C2xC12) = C32xC8oD4φ: C2xC12/C12C2 ⊆ Aut C2xC6144(C2xC6).11(C2xC12)288,828
(C2xC6).12(C2xC12) = Dic3xC24φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).12(C2xC12)288,247
(C2xC6).13(C2xC12) = C3xDic3:C8φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).13(C2xC12)288,248
(C2xC6).14(C2xC12) = C3xC24:C4φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).14(C2xC12)288,249
(C2xC6).15(C2xC12) = C3xD6:C8φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).15(C2xC12)288,254
(C2xC6).16(C2xC12) = C3xC6.C42φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).16(C2xC12)288,265
(C2xC6).17(C2xC12) = S3xC2xC24φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).17(C2xC12)288,670
(C2xC6).18(C2xC12) = C6xC8:S3φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).18(C2xC12)288,671
(C2xC6).19(C2xC12) = C3xC8oD12φ: C2xC12/C12C2 ⊆ Aut C2xC6482(C2xC6).19(C2xC12)288,672
(C2xC6).20(C2xC12) = Dic3xC2xC12φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).20(C2xC12)288,693
(C2xC6).21(C2xC12) = C6xDic3:C4φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).21(C2xC12)288,694
(C2xC6).22(C2xC12) = C6xD6:C4φ: C2xC12/C12C2 ⊆ Aut C2xC696(C2xC6).22(C2xC12)288,698
(C2xC6).23(C2xC12) = C9xC23:C4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6724(C2xC6).23(C2xC12)288,49
(C2xC6).24(C2xC12) = C9xC4.D4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6724(C2xC6).24(C2xC12)288,50
(C2xC6).25(C2xC12) = C9xC4.10D4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC61444(C2xC6).25(C2xC12)288,51
(C2xC6).26(C2xC12) = C22:C4xC18φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).26(C2xC12)288,165
(C2xC6).27(C2xC12) = C9xC42:C2φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).27(C2xC12)288,167
(C2xC6).28(C2xC12) = M4(2)xC18φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).28(C2xC12)288,180
(C2xC6).29(C2xC12) = C32xC23:C4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC672(C2xC6).29(C2xC12)288,317
(C2xC6).30(C2xC12) = C32xC4.D4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC672(C2xC6).30(C2xC12)288,318
(C2xC6).31(C2xC12) = C32xC4.10D4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).31(C2xC12)288,319
(C2xC6).32(C2xC12) = C32xC42:C2φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).32(C2xC12)288,814
(C2xC6).33(C2xC12) = M4(2)xC3xC6φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6144(C2xC6).33(C2xC12)288,827
(C2xC6).34(C2xC12) = C12xC3:C8φ: C2xC12/C2xC6C2 ⊆ Aut C2xC696(C2xC6).34(C2xC12)288,236
(C2xC6).35(C2xC12) = C3xC42.S3φ: C2xC12/C2xC6C2 ⊆ Aut C2xC696(C2xC6).35(C2xC12)288,237
(C2xC6).36(C2xC12) = C3xC12:C8φ: C2xC12/C2xC6C2 ⊆ Aut C2xC696(C2xC6).36(C2xC12)288,238
(C2xC6).37(C2xC12) = C3xC12.55D4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC648(C2xC6).37(C2xC12)288,264
(C2xC6).38(C2xC12) = C3xC12.D4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6244(C2xC6).38(C2xC12)288,267
(C2xC6).39(C2xC12) = C3xC23.7D6φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6244(C2xC6).39(C2xC12)288,268
(C2xC6).40(C2xC12) = C3xC12.10D4φ: C2xC12/C2xC6C2 ⊆ Aut C2xC6484(C2xC6).40(C2xC12)288,270
(C2xC6).41(C2xC12) = C2xC6xC3:C8φ: C2xC12/C2xC6C2 ⊆ Aut C2xC696(C2xC6).41(C2xC12)288,691
(C2xC6).42(C2xC12) = C6xC4.Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C2xC648(C2xC6).42(C2xC12)288,692
(C2xC6).43(C2xC12) = C6xC4:Dic3φ: C2xC12/C2xC6C2 ⊆ Aut C2xC696(C2xC6).43(C2xC12)288,696
(C2xC6).44(C2xC12) = C3xC23.26D6φ: C2xC12/C2xC6C2 ⊆ Aut C2xC648(C2xC6).44(C2xC12)288,697
(C2xC6).45(C2xC12) = C9xC2.C42central extension (φ=1)288(C2xC6).45(C2xC12)288,45
(C2xC6).46(C2xC12) = C9xC8:C4central extension (φ=1)288(C2xC6).46(C2xC12)288,47
(C2xC6).47(C2xC12) = C9xC22:C8central extension (φ=1)144(C2xC6).47(C2xC12)288,48
(C2xC6).48(C2xC12) = C9xC4:C8central extension (φ=1)288(C2xC6).48(C2xC12)288,55
(C2xC6).49(C2xC12) = C4:C4xC18central extension (φ=1)288(C2xC6).49(C2xC12)288,166
(C2xC6).50(C2xC12) = C32xC2.C42central extension (φ=1)288(C2xC6).50(C2xC12)288,313
(C2xC6).51(C2xC12) = C32xC8:C4central extension (φ=1)288(C2xC6).51(C2xC12)288,315
(C2xC6).52(C2xC12) = C32xC22:C8central extension (φ=1)144(C2xC6).52(C2xC12)288,316
(C2xC6).53(C2xC12) = C32xC4:C8central extension (φ=1)288(C2xC6).53(C2xC12)288,323
(C2xC6).54(C2xC12) = C4:C4xC3xC6central extension (φ=1)288(C2xC6).54(C2xC12)288,813

׿
x
:
Z
F
o
wr
Q
<