direct product, non-abelian, soluble
Aliases: A4xSL2(F3), C2.1A42, (Q8xA4):C3, (C2xA4).A4, Q8:A4:C3, Q8:1(C3xA4), (C22xQ8):C32, C23.3(C3xA4), (C22xSL2(F3)):C3, C22:1(C3xSL2(F3)), SmallGroup(288,859)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — C22xQ8 — C22xSL2(F3) — A4xSL2(F3) |
C22xQ8 — A4xSL2(F3) |
Generators and relations for A4xSL2(F3)
G = < a,b,c,d,e,f | a2=b2=c3=d4=f3=1, e2=d2, cac-1=ab=ba, ad=da, ae=ea, af=fa, cbc-1=a, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=d-1, fdf-1=e, fef-1=de >
Subgroups: 336 in 59 conjugacy classes, 14 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C2xC4, Q8, Q8, C23, C32, C12, A4, A4, C2xC6, C22xC4, C2xQ8, C3xC6, SL2(F3), SL2(F3), C3xQ8, C2xA4, C2xA4, C22xC6, C22xQ8, C3xA4, C4xA4, C2xSL2(F3), C3xSL2(F3), C6xA4, C22xSL2(F3), Q8xA4, Q8:A4, A4xSL2(F3)
Quotients: C1, C3, C32, A4, SL2(F3), C3xA4, C3xSL2(F3), A42, A4xSL2(F3)
Character table of A4xSL2(F3)
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 12A | 12B | |
size | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 16 | 16 | 16 | 16 | 6 | 18 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | linear of order 3 |
ρ10 | 2 | -2 | 2 | -2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | symplectic lifted from SL2(F3), Schur index 2 |
ρ11 | 2 | -2 | 2 | -2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | ζ65 | -1 | ζ6 | -1 | 0 | 0 | 1-√-3 | 1+√-3 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | ζ6 | ζ3 | 1 | 1 | ζ32 | 0 | 0 | complex lifted from C3xSL2(F3) |
ρ12 | 2 | -2 | 2 | -2 | -1-√-3 | -1+√-3 | -1 | -1 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | 1+√-3 | 1-√-3 | 1 | 1 | -1 | 1 | 1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | 0 | 0 | complex lifted from C3xSL2(F3) |
ρ13 | 2 | -2 | 2 | -2 | 2 | 2 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | 0 | 0 | -2 | -2 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | ζ65 | ζ3 | ζ32 | ζ3 | ζ32 | 0 | 0 | complex lifted from SL2(F3) |
ρ14 | 2 | -2 | 2 | -2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | ζ6 | -1 | ζ65 | -1 | 0 | 0 | 1+√-3 | 1-√-3 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | ζ65 | ζ32 | 1 | 1 | ζ3 | 0 | 0 | complex lifted from C3xSL2(F3) |
ρ15 | 2 | -2 | 2 | -2 | 2 | 2 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | 0 | 0 | -2 | -2 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | ζ6 | ζ32 | ζ3 | ζ32 | ζ3 | 0 | 0 | complex lifted from SL2(F3) |
ρ16 | 2 | -2 | 2 | -2 | -1+√-3 | -1-√-3 | -1 | -1 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | 1-√-3 | 1+√-3 | 1 | 1 | -1 | 1 | 1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | 0 | 0 | complex lifted from C3xSL2(F3) |
ρ17 | 2 | -2 | 2 | -2 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | ζ6 | -1 | ζ65 | 0 | 0 | 1+√-3 | 1-√-3 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | ζ6 | 1 | ζ32 | ζ3 | 1 | 0 | 0 | complex lifted from C3xSL2(F3) |
ρ18 | 2 | -2 | 2 | -2 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | ζ65 | -1 | ζ6 | 0 | 0 | 1-√-3 | 1+√-3 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | ζ65 | 1 | ζ3 | ζ32 | 1 | 0 | 0 | complex lifted from C3xSL2(F3) |
ρ19 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ20 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from A4 |
ρ21 | 3 | 3 | -1 | -1 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ6 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3xA4 |
ρ22 | 3 | 3 | -1 | -1 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ65 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3xA4 |
ρ23 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | complex lifted from C3xA4 |
ρ24 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | complex lifted from C3xA4 |
ρ25 | 6 | -6 | -2 | 2 | 0 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ26 | 6 | -6 | -2 | 2 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | ζ3 | ζ6 | ζ65 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 6 | -6 | -2 | 2 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | ζ32 | ζ65 | ζ6 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 9 | 9 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A42 |
(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 19 11)(2 20 12)(3 17 9)(4 18 10)(5 21 13)(6 22 14)(7 23 15)(8 24 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8 3 6)(2 7 4 5)(9 14 11 16)(10 13 12 15)(17 22 19 24)(18 21 20 23)
(2 7 8)(4 5 6)(10 13 14)(12 15 16)(18 21 22)(20 23 24)
G:=sub<Sym(24)| (9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,19,11)(2,20,12)(3,17,9)(4,18,10)(5,21,13)(6,22,14)(7,23,15)(8,24,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8,3,6)(2,7,4,5)(9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23), (2,7,8)(4,5,6)(10,13,14)(12,15,16)(18,21,22)(20,23,24)>;
G:=Group( (9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,19,11)(2,20,12)(3,17,9)(4,18,10)(5,21,13)(6,22,14)(7,23,15)(8,24,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8,3,6)(2,7,4,5)(9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23), (2,7,8)(4,5,6)(10,13,14)(12,15,16)(18,21,22)(20,23,24) );
G=PermutationGroup([[(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,19,11),(2,20,12),(3,17,9),(4,18,10),(5,21,13),(6,22,14),(7,23,15),(8,24,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8,3,6),(2,7,4,5),(9,14,11,16),(10,13,12,15),(17,22,19,24),(18,21,20,23)], [(2,7,8),(4,5,6),(10,13,14),(12,15,16),(18,21,22),(20,23,24)]])
G:=TransitiveGroup(24,580);
Matrix representation of A4xSL2(F3) ►in GL5(F13)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 12 | 12 | 12 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 12 |
9 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 |
0 | 0 | 4 | 4 | 4 |
3 | 4 | 0 | 0 | 0 |
4 | 10 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
4 | 10 | 0 | 0 | 0 |
10 | 9 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
10 | 9 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,12,0,0,0,1,12,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,1,0,12,0,0,0,0,12],[9,0,0,0,0,0,9,0,0,0,0,0,9,0,4,0,0,0,0,4,0,0,0,9,4],[3,4,0,0,0,4,10,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[4,10,0,0,0,10,9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,10,0,0,0,0,9,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3] >;
A4xSL2(F3) in GAP, Magma, Sage, TeX
A_4\times {\rm SL}_2({\mathbb F}_3)
% in TeX
G:=Group("A4xSL(2,3)");
// GroupNames label
G:=SmallGroup(288,859);
// by ID
G=gap.SmallGroup(288,859);
# by ID
G:=PCGroup([7,-3,-3,-2,2,-2,2,-2,198,94,3784,172,1517,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^4=f^3=1,e^2=d^2,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=d^-1,f*d*f^-1=e,f*e*f^-1=d*e>;
// generators/relations
Export