direct product, non-abelian, soluble
Aliases: A4×SL2(𝔽3), C2.1A42, (Q8×A4)⋊C3, (C2×A4).A4, Q8⋊A4⋊C3, Q8⋊1(C3×A4), (C22×Q8)⋊C32, C23.3(C3×A4), (C22×SL2(𝔽3))⋊C3, C22⋊1(C3×SL2(𝔽3)), SmallGroup(288,859)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — C22×Q8 — C22×SL2(𝔽3) — A4×SL2(𝔽3) |
C22×Q8 — A4×SL2(𝔽3) |
Generators and relations for A4×SL2(𝔽3)
G = < a,b,c,d,e,f | a2=b2=c3=d4=f3=1, e2=d2, cac-1=ab=ba, ad=da, ae=ea, af=fa, cbc-1=a, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=d-1, fdf-1=e, fef-1=de >
Subgroups: 336 in 59 conjugacy classes, 14 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C2×C4, Q8, Q8, C23, C32, C12, A4, A4, C2×C6, C22×C4, C2×Q8, C3×C6, SL2(𝔽3), SL2(𝔽3), C3×Q8, C2×A4, C2×A4, C22×C6, C22×Q8, C3×A4, C4×A4, C2×SL2(𝔽3), C3×SL2(𝔽3), C6×A4, C22×SL2(𝔽3), Q8×A4, Q8⋊A4, A4×SL2(𝔽3)
Quotients: C1, C3, C32, A4, SL2(𝔽3), C3×A4, C3×SL2(𝔽3), A42, A4×SL2(𝔽3)
Character table of A4×SL2(𝔽3)
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 12A | 12B | |
size | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | 16 | 16 | 16 | 16 | 6 | 18 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | linear of order 3 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | linear of order 3 |
ρ10 | 2 | -2 | 2 | -2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ11 | 2 | -2 | 2 | -2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | ζ65 | -1 | ζ6 | -1 | 0 | 0 | 1-√-3 | 1+√-3 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | ζ6 | ζ3 | 1 | 1 | ζ32 | 0 | 0 | complex lifted from C3×SL2(𝔽3) |
ρ12 | 2 | -2 | 2 | -2 | -1-√-3 | -1+√-3 | -1 | -1 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | 1+√-3 | 1-√-3 | 1 | 1 | -1 | 1 | 1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | 0 | 0 | complex lifted from C3×SL2(𝔽3) |
ρ13 | 2 | -2 | 2 | -2 | 2 | 2 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | 0 | 0 | -2 | -2 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | ζ65 | ζ3 | ζ32 | ζ3 | ζ32 | 0 | 0 | complex lifted from SL2(𝔽3) |
ρ14 | 2 | -2 | 2 | -2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | ζ6 | -1 | ζ65 | -1 | 0 | 0 | 1+√-3 | 1-√-3 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | ζ65 | ζ32 | 1 | 1 | ζ3 | 0 | 0 | complex lifted from C3×SL2(𝔽3) |
ρ15 | 2 | -2 | 2 | -2 | 2 | 2 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | 0 | 0 | -2 | -2 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | ζ6 | ζ32 | ζ3 | ζ32 | ζ3 | 0 | 0 | complex lifted from SL2(𝔽3) |
ρ16 | 2 | -2 | 2 | -2 | -1+√-3 | -1-√-3 | -1 | -1 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | 1-√-3 | 1+√-3 | 1 | 1 | -1 | 1 | 1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | 0 | 0 | complex lifted from C3×SL2(𝔽3) |
ρ17 | 2 | -2 | 2 | -2 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1 | ζ6 | -1 | ζ65 | 0 | 0 | 1+√-3 | 1-√-3 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | ζ6 | 1 | ζ32 | ζ3 | 1 | 0 | 0 | complex lifted from C3×SL2(𝔽3) |
ρ18 | 2 | -2 | 2 | -2 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1 | ζ65 | -1 | ζ6 | 0 | 0 | 1-√-3 | 1+√-3 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | ζ65 | 1 | ζ3 | ζ32 | 1 | 0 | 0 | complex lifted from C3×SL2(𝔽3) |
ρ19 | 3 | 3 | -1 | -1 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ20 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from A4 |
ρ21 | 3 | 3 | -1 | -1 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ6 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×A4 |
ρ22 | 3 | 3 | -1 | -1 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ65 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×A4 |
ρ23 | 3 | 3 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | complex lifted from C3×A4 |
ρ24 | 3 | 3 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | complex lifted from C3×A4 |
ρ25 | 6 | -6 | -2 | 2 | 0 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ26 | 6 | -6 | -2 | 2 | 0 | 0 | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | ζ3 | ζ6 | ζ65 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 6 | -6 | -2 | 2 | 0 | 0 | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | ζ32 | ζ65 | ζ6 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 9 | 9 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A42 |
(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)
(1 19 11)(2 20 12)(3 17 9)(4 18 10)(5 21 13)(6 22 14)(7 23 15)(8 24 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8 3 6)(2 7 4 5)(9 14 11 16)(10 13 12 15)(17 22 19 24)(18 21 20 23)
(2 7 8)(4 5 6)(10 13 14)(12 15 16)(18 21 22)(20 23 24)
G:=sub<Sym(24)| (9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,19,11)(2,20,12)(3,17,9)(4,18,10)(5,21,13)(6,22,14)(7,23,15)(8,24,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8,3,6)(2,7,4,5)(9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23), (2,7,8)(4,5,6)(10,13,14)(12,15,16)(18,21,22)(20,23,24)>;
G:=Group( (9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,19,11)(2,20,12)(3,17,9)(4,18,10)(5,21,13)(6,22,14)(7,23,15)(8,24,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8,3,6)(2,7,4,5)(9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23), (2,7,8)(4,5,6)(10,13,14)(12,15,16)(18,21,22)(20,23,24) );
G=PermutationGroup([[(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16)], [(1,19,11),(2,20,12),(3,17,9),(4,18,10),(5,21,13),(6,22,14),(7,23,15),(8,24,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8,3,6),(2,7,4,5),(9,14,11,16),(10,13,12,15),(17,22,19,24),(18,21,20,23)], [(2,7,8),(4,5,6),(10,13,14),(12,15,16),(18,21,22),(20,23,24)]])
G:=TransitiveGroup(24,580);
Matrix representation of A4×SL2(𝔽3) ►in GL5(𝔽13)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 12 | 12 | 12 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 12 |
9 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 |
0 | 0 | 4 | 4 | 4 |
3 | 4 | 0 | 0 | 0 |
4 | 10 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
4 | 10 | 0 | 0 | 0 |
10 | 9 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
10 | 9 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,12,0,0,0,1,12,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,1,0,12,0,0,0,0,12],[9,0,0,0,0,0,9,0,0,0,0,0,9,0,4,0,0,0,0,4,0,0,0,9,4],[3,4,0,0,0,4,10,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[4,10,0,0,0,10,9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,10,0,0,0,0,9,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3] >;
A4×SL2(𝔽3) in GAP, Magma, Sage, TeX
A_4\times {\rm SL}_2({\mathbb F}_3)
% in TeX
G:=Group("A4xSL(2,3)");
// GroupNames label
G:=SmallGroup(288,859);
// by ID
G=gap.SmallGroup(288,859);
# by ID
G:=PCGroup([7,-3,-3,-2,2,-2,2,-2,198,94,3784,172,1517,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^4=f^3=1,e^2=d^2,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=d^-1,f*d*f^-1=e,f*e*f^-1=d*e>;
// generators/relations
Export