Aliases: Ω+4(𝔽3), SL2(𝔽3)⋊A4, 2+ 1+4⋊C32, C2.2A42, Q8.A4⋊C3, Q8.(C3×A4), C23⋊A4⋊C3, SmallGroup(288,860)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — 2+ 1+4 — Ω4+ (𝔽3) |
C1 — C2 — Q8 — 2+ 1+4 — Q8.A4 — Ω4+ (𝔽3) |
2+ 1+4 — Ω4+ (𝔽3) |
Generators and relations for Ω4+ (𝔽3)
G = < a,b,c,d,e,f | a4=c3=d2=e2=f3=1, b2=a2, bab-1=dad=a-1, cac-1=faf-1=b, ae=ea, cbc-1=fbf-1=ab, bd=db, ebe=a2b, dcd=a-1c, ece=a-1bc, cf=fc, fdf-1=de=ed, fef-1=d >
Character table of Ω4+ (𝔽3)
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 18 | 4 | 4 | 4 | 4 | 16 | 16 | 16 | 16 | 6 | 6 | 4 | 4 | 4 | 4 | 16 | 16 | 16 | 16 | 24 | 24 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | linear of order 3 |
ρ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | linear of order 3 |
ρ5 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ9 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ3 | linear of order 3 |
ρ10 | 3 | 3 | -1 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | orthogonal lifted from A4 |
ρ11 | 3 | 3 | -1 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | -1 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | orthogonal lifted from A4 |
ρ12 | 3 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | 0 | complex lifted from C3×A4 |
ρ13 | 3 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | 0 | complex lifted from C3×A4 |
ρ14 | 3 | 3 | -1 | 0 | 0 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | 0 | 0 | ζ6 | complex lifted from C3×A4 |
ρ15 | 3 | 3 | -1 | 0 | 0 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | 0 | 0 | ζ65 | complex lifted from C3×A4 |
ρ16 | 4 | -4 | 0 | -2 | -2 | -2 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ17 | 4 | -4 | 0 | 1+√-3 | 1-√-3 | 1+√-3 | 1-√-3 | ζ32 | 1 | ζ3 | 1 | 0 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1 | ζ65 | -1 | ζ6 | 0 | 0 | 0 | 0 | complex faithful |
ρ18 | 4 | -4 | 0 | -2 | -2 | 1-√-3 | 1+√-3 | ζ32 | ζ3 | ζ3 | ζ32 | 0 | 0 | -1+√-3 | -1-√-3 | 2 | 2 | ζ65 | ζ65 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | complex faithful |
ρ19 | 4 | -4 | 0 | 1+√-3 | 1-√-3 | 1-√-3 | 1+√-3 | 1 | ζ32 | 1 | ζ3 | 0 | 0 | -1+√-3 | -1-√-3 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ65 | -1 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 4 | -4 | 0 | 1-√-3 | 1+√-3 | 1+√-3 | 1-√-3 | 1 | ζ3 | 1 | ζ32 | 0 | 0 | -1-√-3 | -1+√-3 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ6 | -1 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 1+√-3 | 1-√-3 | -2 | -2 | ζ3 | ζ3 | ζ32 | ζ32 | 0 | 0 | 2 | 2 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 1-√-3 | 1+√-3 | 1-√-3 | 1+√-3 | ζ3 | 1 | ζ32 | 1 | 0 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1 | ζ6 | -1 | ζ65 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 1-√-3 | 1+√-3 | -2 | -2 | ζ32 | ζ32 | ζ3 | ζ3 | 0 | 0 | 2 | 2 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | -2 | -2 | 1+√-3 | 1-√-3 | ζ3 | ζ32 | ζ32 | ζ3 | 0 | 0 | -1-√-3 | -1+√-3 | 2 | 2 | ζ6 | ζ6 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 9 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A42 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 12 3 10)(2 11 4 9)(5 21 7 23)(6 24 8 22)(13 19 15 17)(14 18 16 20)
(1 23 16)(2 8 20)(3 21 14)(4 6 18)(5 13 11)(7 15 9)(10 22 17)(12 24 19)
(1 3)(5 22)(6 21)(7 24)(8 23)(10 12)(13 14)(15 16)(17 20)(18 19)
(1 12)(2 9)(3 10)(4 11)(5 22)(6 23)(7 24)(8 21)(13 15)(14 16)
(1 16 23)(2 19 5)(3 14 21)(4 17 7)(6 10 15)(8 12 13)(9 18 22)(11 20 24)
G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,12,3,10)(2,11,4,9)(5,21,7,23)(6,24,8,22)(13,19,15,17)(14,18,16,20), (1,23,16)(2,8,20)(3,21,14)(4,6,18)(5,13,11)(7,15,9)(10,22,17)(12,24,19), (1,3)(5,22)(6,21)(7,24)(8,23)(10,12)(13,14)(15,16)(17,20)(18,19), (1,12)(2,9)(3,10)(4,11)(5,22)(6,23)(7,24)(8,21)(13,15)(14,16), (1,16,23)(2,19,5)(3,14,21)(4,17,7)(6,10,15)(8,12,13)(9,18,22)(11,20,24)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,12,3,10)(2,11,4,9)(5,21,7,23)(6,24,8,22)(13,19,15,17)(14,18,16,20), (1,23,16)(2,8,20)(3,21,14)(4,6,18)(5,13,11)(7,15,9)(10,22,17)(12,24,19), (1,3)(5,22)(6,21)(7,24)(8,23)(10,12)(13,14)(15,16)(17,20)(18,19), (1,12)(2,9)(3,10)(4,11)(5,22)(6,23)(7,24)(8,21)(13,15)(14,16), (1,16,23)(2,19,5)(3,14,21)(4,17,7)(6,10,15)(8,12,13)(9,18,22)(11,20,24) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,12,3,10),(2,11,4,9),(5,21,7,23),(6,24,8,22),(13,19,15,17),(14,18,16,20)], [(1,23,16),(2,8,20),(3,21,14),(4,6,18),(5,13,11),(7,15,9),(10,22,17),(12,24,19)], [(1,3),(5,22),(6,21),(7,24),(8,23),(10,12),(13,14),(15,16),(17,20),(18,19)], [(1,12),(2,9),(3,10),(4,11),(5,22),(6,23),(7,24),(8,21),(13,15),(14,16)], [(1,16,23),(2,19,5),(3,14,21),(4,17,7),(6,10,15),(8,12,13),(9,18,22),(11,20,24)]])
G:=TransitiveGroup(24,685);
Matrix representation of Ω4+ (𝔽3) ►in GL4(ℚ) generated by
0 | 0 | 0 | -1 |
0 | 0 | -1 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
-1/2 | 1/2 | 1/2 | 1/2 |
-1/2 | -1/2 | 1/2 | -1/2 |
-1/2 | -1/2 | -1/2 | 1/2 |
-1/2 | 1/2 | -1/2 | -1/2 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,Rationals())| [0,0,0,1,0,0,1,0,0,-1,0,0,-1,0,0,0],[0,0,1,0,0,0,0,-1,-1,0,0,0,0,1,0,0],[-1/2,-1/2,-1/2,-1/2,1/2,-1/2,-1/2,1/2,1/2,1/2,-1/2,-1/2,1/2,-1/2,1/2,-1/2],[0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0] >;
Ω4+ (𝔽3) in GAP, Magma, Sage, TeX
{\rm Omega}_4^+({\mathbb F}_3)
% in TeX
G:=Group("Omega+(4,3)");
// GroupNames label
G:=SmallGroup(288,860);
// by ID
G=gap.SmallGroup(288,860);
# by ID
G:=PCGroup([7,-3,-3,-2,2,-2,2,-2,198,352,94,521,248,3784,172,1517,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^4=c^3=d^2=e^2=f^3=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=f*a*f^-1=b,a*e=e*a,c*b*c^-1=f*b*f^-1=a*b,b*d=d*b,e*b*e=a^2*b,d*c*d=a^-1*c,e*c*e=a^-1*b*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations
Export
Subgroup lattice of Ω4+ (𝔽3) in TeX
Character table of Ω4+ (𝔽3) in TeX