Copied to
clipboard

G = C2×C6.6S4order 288 = 25·32

Direct product of C2 and C6.6S4

direct product, non-abelian, soluble

Aliases: C2×C6.6S4, C6⋊GL2(𝔽3), SL2(𝔽3)⋊3D6, (C6×Q8)⋊1S3, (C3×Q8)⋊2D6, C6.32(C2×S4), (C2×C6).15S4, C22.5(C3⋊S4), C32(C2×GL2(𝔽3)), (C2×SL2(𝔽3))⋊2S3, (C6×SL2(𝔽3))⋊1C2, (C3×SL2(𝔽3))⋊3C22, Q8⋊(C2×C3⋊S3), C2.6(C2×C3⋊S4), (C2×Q8)⋊1(C3⋊S3), SmallGroup(288,911)

Series: Derived Chief Lower central Upper central

C1C2Q8C3×SL2(𝔽3) — C2×C6.6S4
C1C2Q8C3×Q8C3×SL2(𝔽3)C6.6S4 — C2×C6.6S4
C3×SL2(𝔽3) — C2×C6.6S4
C1C22

Generators and relations for C2×C6.6S4
 G = < a,b,c,d,e,f | a2=b6=e3=f2=1, c2=d2=b3, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, dcd-1=b3c, ece-1=b3cd, fcf=cd, ede-1=c, fdf=b3d, fef=e-1 >

Subgroups: 1016 in 144 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C8, C2×C4, D4, Q8, Q8, C23, C32, C12, D6, C2×C6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C3⋊S3, C3×C6, C3⋊C8, SL2(𝔽3), D12, C2×C12, C3×Q8, C3×Q8, C22×S3, C2×SD16, C2×C3⋊S3, C62, C2×C3⋊C8, Q82S3, GL2(𝔽3), C2×SL2(𝔽3), C2×D12, C6×Q8, C3×SL2(𝔽3), C22×C3⋊S3, C2×Q82S3, C2×GL2(𝔽3), C6.6S4, C6×SL2(𝔽3), C2×C6.6S4
Quotients: C1, C2, C22, S3, D6, C3⋊S3, S4, C2×C3⋊S3, GL2(𝔽3), C2×S4, C3⋊S4, C2×GL2(𝔽3), C6.6S4, C2×C3⋊S4, C2×C6.6S4

Character table of C2×C6.6S4

 class 12A2B2C2D2E3A3B3C3D4A4B6A6B6C6D6E6F6G6H6I6J6K6L8A8B8C8D12A12B
 size 11113636288866222888888888181818181212
ρ1111111111111111111111111111111    trivial
ρ211-1-11-111111-1-11-11-1-1-1-1-1-1111-1-11-11    linear of order 2
ρ311-1-1-1111111-1-11-11-1-1-1-1-1-111-111-1-11    linear of order 2
ρ41111-1-1111111111111111111-1-1-1-111    linear of order 2
ρ5222200-1-1-1222-1-1-1-1-1-122-1-12-10000-1-1    orthogonal lifted from S3
ρ622-2-200-1-1-122-21-11-111-2-2112-100001-1    orthogonal lifted from D6
ρ722-2-200-12-1-12-21-1121111-2-2-1-100001-1    orthogonal lifted from D6
ρ822-2-2002-1-1-12-2-22-2-1111111-1-10000-22    orthogonal lifted from D6
ρ9222200-1-12-122-1-1-1-122-1-1-1-1-120000-1-1    orthogonal lifted from S3
ρ1022-2-200-1-12-12-21-11-1-2-21111-1200001-1    orthogonal lifted from D6
ρ11222200-12-1-122-1-1-12-1-1-1-122-1-10000-1-1    orthogonal lifted from S3
ρ122222002-1-1-122222-1-1-1-1-1-1-1-1-1000022    orthogonal lifted from S3
ρ132-2-22002-1-1-100-2-2211-11-11-111--2--2-2-200    complex lifted from GL2(𝔽3)
ρ142-22-2002-1-1-1002-2-21-11-11-1111-2--2-2--200    complex lifted from GL2(𝔽3)
ρ152-22-2002-1-1-1002-2-21-11-11-1111--2-2--2-200    complex lifted from GL2(𝔽3)
ρ162-2-22002-1-1-100-2-2211-11-11-111-2-2--2--200    complex lifted from GL2(𝔽3)
ρ1733-3-3-113000-11-33-30000000001-1-111-1    orthogonal lifted from C2×S4
ρ183333-1-13000-1-13330000000001111-1-1    orthogonal lifted from S4
ρ193333113000-1-1333000000000-1-1-1-1-1-1    orthogonal lifted from S4
ρ2033-3-31-13000-11-33-3000000000-111-11-1    orthogonal lifted from C2×S4
ρ214-4-4400-2-2110022-22-11-112-2-1-1000000    orthogonal lifted from C6.6S4
ρ224-44-400-211-200-222-11-1-221-12-1000000    orthogonal lifted from C6.6S4
ρ234-4-4400-21-210022-2-12-2-11-11-12000000    orthogonal lifted from C6.6S4
ρ244-44-4004111004-4-4-11-11-11-1-1-1000000    orthogonal lifted from GL2(𝔽3)
ρ254-4-4400411100-4-44-1-11-11-11-1-1000000    orthogonal lifted from GL2(𝔽3)
ρ264-44-400-2-21100-22221-11-1-22-1-1000000    orthogonal lifted from C6.6S4
ρ274-44-400-21-2100-222-1-221-11-1-12000000    orthogonal lifted from C6.6S4
ρ284-4-4400-211-20022-2-1-112-2-112-1000000    orthogonal lifted from C6.6S4
ρ2966-6-600-3000-223-330000000000000-11    orthogonal lifted from C2×C3⋊S4
ρ30666600-3000-2-2-3-3-3000000000000011    orthogonal lifted from C3⋊S4

Smallest permutation representation of C2×C6.6S4
On 48 points
Generators in S48
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 36)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 26 4 29)(2 27 5 30)(3 28 6 25)(7 43 10 46)(8 44 11 47)(9 45 12 48)(13 32 16 35)(14 33 17 36)(15 34 18 31)(19 40 22 37)(20 41 23 38)(21 42 24 39)
(1 41 4 38)(2 42 5 39)(3 37 6 40)(7 17 10 14)(8 18 11 15)(9 13 12 16)(19 28 22 25)(20 29 23 26)(21 30 24 27)(31 44 34 47)(32 45 35 48)(33 46 36 43)
(1 5 3)(2 6 4)(7 47 35)(8 48 36)(9 43 31)(10 44 32)(11 45 33)(12 46 34)(13 17 15)(14 18 16)(19 26 39)(20 27 40)(21 28 41)(22 29 42)(23 30 37)(24 25 38)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 42)(8 41)(9 40)(10 39)(11 38)(12 37)(19 32)(20 31)(21 36)(22 35)(23 34)(24 33)(25 45)(26 44)(27 43)(28 48)(29 47)(30 46)

G:=sub<Sym(48)| (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,26,4,29)(2,27,5,30)(3,28,6,25)(7,43,10,46)(8,44,11,47)(9,45,12,48)(13,32,16,35)(14,33,17,36)(15,34,18,31)(19,40,22,37)(20,41,23,38)(21,42,24,39), (1,41,4,38)(2,42,5,39)(3,37,6,40)(7,17,10,14)(8,18,11,15)(9,13,12,16)(19,28,22,25)(20,29,23,26)(21,30,24,27)(31,44,34,47)(32,45,35,48)(33,46,36,43), (1,5,3)(2,6,4)(7,47,35)(8,48,36)(9,43,31)(10,44,32)(11,45,33)(12,46,34)(13,17,15)(14,18,16)(19,26,39)(20,27,40)(21,28,41)(22,29,42)(23,30,37)(24,25,38), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(19,32)(20,31)(21,36)(22,35)(23,34)(24,33)(25,45)(26,44)(27,43)(28,48)(29,47)(30,46)>;

G:=Group( (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,26,4,29)(2,27,5,30)(3,28,6,25)(7,43,10,46)(8,44,11,47)(9,45,12,48)(13,32,16,35)(14,33,17,36)(15,34,18,31)(19,40,22,37)(20,41,23,38)(21,42,24,39), (1,41,4,38)(2,42,5,39)(3,37,6,40)(7,17,10,14)(8,18,11,15)(9,13,12,16)(19,28,22,25)(20,29,23,26)(21,30,24,27)(31,44,34,47)(32,45,35,48)(33,46,36,43), (1,5,3)(2,6,4)(7,47,35)(8,48,36)(9,43,31)(10,44,32)(11,45,33)(12,46,34)(13,17,15)(14,18,16)(19,26,39)(20,27,40)(21,28,41)(22,29,42)(23,30,37)(24,25,38), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(19,32)(20,31)(21,36)(22,35)(23,34)(24,33)(25,45)(26,44)(27,43)(28,48)(29,47)(30,46) );

G=PermutationGroup([[(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,36),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,26,4,29),(2,27,5,30),(3,28,6,25),(7,43,10,46),(8,44,11,47),(9,45,12,48),(13,32,16,35),(14,33,17,36),(15,34,18,31),(19,40,22,37),(20,41,23,38),(21,42,24,39)], [(1,41,4,38),(2,42,5,39),(3,37,6,40),(7,17,10,14),(8,18,11,15),(9,13,12,16),(19,28,22,25),(20,29,23,26),(21,30,24,27),(31,44,34,47),(32,45,35,48),(33,46,36,43)], [(1,5,3),(2,6,4),(7,47,35),(8,48,36),(9,43,31),(10,44,32),(11,45,33),(12,46,34),(13,17,15),(14,18,16),(19,26,39),(20,27,40),(21,28,41),(22,29,42),(23,30,37),(24,25,38)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,42),(8,41),(9,40),(10,39),(11,38),(12,37),(19,32),(20,31),(21,36),(22,35),(23,34),(24,33),(25,45),(26,44),(27,43),(28,48),(29,47),(30,46)]])

Matrix representation of C2×C6.6S4 in GL4(𝔽73) generated by

72000
07200
0010
0001
,
696500
29300
00720
00072
,
1000
0100
005340
002120
,
1000
0100
005352
003320
,
696500
29300
00721
00720
,
72000
10100
00721
0001
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[69,29,0,0,65,3,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,53,21,0,0,40,20],[1,0,0,0,0,1,0,0,0,0,53,33,0,0,52,20],[69,29,0,0,65,3,0,0,0,0,72,72,0,0,1,0],[72,10,0,0,0,1,0,0,0,0,72,0,0,0,1,1] >;

C2×C6.6S4 in GAP, Magma, Sage, TeX

C_2\times C_6._6S_4
% in TeX

G:=Group("C2xC6.6S4");
// GroupNames label

G:=SmallGroup(288,911);
// by ID

G=gap.SmallGroup(288,911);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,170,675,2524,1908,172,1517,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^6=e^3=f^2=1,c^2=d^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,d*c*d^-1=b^3*c,e*c*e^-1=b^3*c*d,f*c*f=c*d,e*d*e^-1=c,f*d*f=b^3*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of C2×C6.6S4 in TeX

׿
×
𝔽