Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C3⋊S4

Direct product G=N×Q with N=C2 and Q=C2×C3⋊S4
dρLabelID
C22×C3⋊S436C2^2xC3:S4288,1034


Non-split extensions G=N.Q with N=C2 and Q=C2×C3⋊S4
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C3⋊S4) = C4×C3⋊S4central extension (φ=1)366C2.1(C2xC3:S4)288,908
C2.2(C2×C3⋊S4) = C2×C6.7S4central extension (φ=1)72C2.2(C2xC3:S4)288,916
C2.3(C2×C3⋊S4) = A4⋊Dic6central stem extension (φ=1)726-C2.3(C2xC3:S4)288,907
C2.4(C2×C3⋊S4) = C12⋊S4central stem extension (φ=1)366+C2.4(C2xC3:S4)288,909
C2.5(C2×C3⋊S4) = C2×C6.5S4central stem extension (φ=1)96C2.5(C2xC3:S4)288,910
C2.6(C2×C3⋊S4) = C2×C6.6S4central stem extension (φ=1)48C2.6(C2xC3:S4)288,911
C2.7(C2×C3⋊S4) = SL2(𝔽3).D6central stem extension (φ=1)484C2.7(C2xC3:S4)288,912
C2.8(C2×C3⋊S4) = C12.6S4central stem extension (φ=1)964-C2.8(C2xC3:S4)288,913
C2.9(C2×C3⋊S4) = C12.14S4central stem extension (φ=1)484C2.9(C2xC3:S4)288,914
C2.10(C2×C3⋊S4) = C12.7S4central stem extension (φ=1)484+C2.10(C2xC3:S4)288,915
C2.11(C2×C3⋊S4) = (C2×C6)⋊4S4central stem extension (φ=1)366C2.11(C2xC3:S4)288,917

׿
×
𝔽