Aliases: (C3×C24)⋊4C4, C3⋊S3.4D8, C8⋊1(C32⋊C4), C3⋊S3.4Q16, C3⋊Dic3.7Q8, C32⋊4C8⋊12C4, C32⋊3(C2.D8), C4.9(C2×C32⋊C4), (C8×C3⋊S3).11C2, (C2×C3⋊S3).39D4, (C3×C6).12(C4⋊C4), (C3×C12).13(C2×C4), C4⋊(C32⋊C4).7C2, C2.5(C4⋊(C32⋊C4)), (C4×C3⋊S3).81C22, SmallGroup(288,417)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C2×C3⋊S3 — C4×C3⋊S3 — C4⋊(C32⋊C4) — C3⋊S3.4D8 |
Generators and relations for C3⋊S3.4D8
G = < a,b,c,d,e | a3=b3=c2=d8=1, e2=c, ab=ba, cac=a-1, ad=da, eae-1=ab-1, cbc=b-1, bd=db, ebe-1=a-1b-1, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 328 in 58 conjugacy classes, 18 normal (16 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, C32, Dic3, C12, D6, C4⋊C4, C2×C8, C3⋊S3, C3×C6, C3⋊C8, C24, C4×S3, C2.D8, C3⋊Dic3, C3×C12, C32⋊C4, C2×C3⋊S3, S3×C8, C32⋊4C8, C3×C24, C4×C3⋊S3, C2×C32⋊C4, C8×C3⋊S3, C4⋊(C32⋊C4), C3⋊S3.4D8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C4⋊C4, D8, Q16, C2.D8, C32⋊C4, C2×C32⋊C4, C4⋊(C32⋊C4), C3⋊S3.4D8
Character table of C3⋊S3.4D8
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 9 | 9 | 4 | 4 | 2 | 18 | 36 | 36 | 36 | 36 | 4 | 4 | 2 | 2 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | -i | i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | i | -i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ15 | 4 | 4 | 0 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 4 | 4 | 0 | 0 | 1 | -2 | 1 | -2 | -2 | 1 | -2 | -2 | 1 | 1 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ16 | 4 | 4 | 0 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -4 | -4 | 0 | 0 | 1 | -2 | 1 | -2 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ17 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 4 | 4 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | -2 | -2 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ18 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -4 | -4 | 0 | 0 | -2 | 1 | -2 | 1 | -1 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ19 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | -3i | 0 | 3i | -3i | 0 | 0 | 0 | 3i | complex lifted from C4⋊(C32⋊C4) |
ρ20 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | 3i | 0 | 0 | 3i | -3i | -3i | 0 | complex lifted from C4⋊(C32⋊C4) |
ρ21 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | -3i | 0 | 0 | -3i | 3i | 3i | 0 | complex lifted from C4⋊(C32⋊C4) |
ρ22 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | 3i | 0 | -3i | 3i | 0 | 0 | 0 | -3i | complex lifted from C4⋊(C32⋊C4) |
ρ23 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2√2 | -2√2 | 0 | 0 | 0 | -3i | 0 | 3i | ζ87+2ζ85 | √2 | 2ζ87+ζ85 | ζ83+2ζ8 | -√2 | -√2 | √2 | 2ζ83+ζ8 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2√2 | -2√2 | 0 | 0 | 3i | 0 | -3i | 0 | √2 | ζ87+2ζ85 | -√2 | -√2 | ζ83+2ζ8 | 2ζ87+ζ85 | 2ζ83+ζ8 | √2 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | -2√2 | 2√2 | 0 | 0 | 0 | 3i | 0 | -3i | 2ζ87+ζ85 | -√2 | ζ87+2ζ85 | 2ζ83+ζ8 | √2 | √2 | -√2 | ζ83+2ζ8 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2√2 | -2√2 | 0 | 0 | -3i | 0 | 3i | 0 | √2 | 2ζ83+ζ8 | -√2 | -√2 | 2ζ87+ζ85 | ζ83+2ζ8 | ζ87+2ζ85 | √2 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | -2√2 | 2√2 | 0 | 0 | 0 | -3i | 0 | 3i | ζ83+2ζ8 | -√2 | 2ζ83+ζ8 | ζ87+2ζ85 | √2 | √2 | -√2 | 2ζ87+ζ85 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2√2 | 2√2 | 0 | 0 | 3i | 0 | -3i | 0 | -√2 | ζ83+2ζ8 | √2 | √2 | ζ87+2ζ85 | 2ζ83+ζ8 | 2ζ87+ζ85 | -√2 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -2√2 | 2√2 | 0 | 0 | -3i | 0 | 3i | 0 | -√2 | 2ζ87+ζ85 | √2 | √2 | 2ζ83+ζ8 | ζ87+2ζ85 | ζ83+2ζ8 | -√2 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2√2 | -2√2 | 0 | 0 | 0 | 3i | 0 | -3i | 2ζ83+ζ8 | √2 | ζ83+2ζ8 | 2ζ87+ζ85 | -√2 | -√2 | √2 | ζ87+2ζ85 | complex faithful |
(1 25 38)(2 26 39)(3 27 40)(4 28 33)(5 29 34)(6 30 35)(7 31 36)(8 32 37)(9 46 20)(10 47 21)(11 48 22)(12 41 23)(13 42 24)(14 43 17)(15 44 18)(16 45 19)
(9 20 46)(10 21 47)(11 22 48)(12 23 41)(13 24 42)(14 17 43)(15 18 44)(16 19 45)
(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 41)(24 42)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 16)(6 15)(7 14)(8 13)(17 31 43 36)(18 30 44 35)(19 29 45 34)(20 28 46 33)(21 27 47 40)(22 26 48 39)(23 25 41 38)(24 32 42 37)
G:=sub<Sym(48)| (1,25,38)(2,26,39)(3,27,40)(4,28,33)(5,29,34)(6,30,35)(7,31,36)(8,32,37)(9,46,20)(10,47,21)(11,48,22)(12,41,23)(13,42,24)(14,43,17)(15,44,18)(16,45,19), (9,20,46)(10,21,47)(11,22,48)(12,23,41)(13,24,42)(14,17,43)(15,18,44)(16,19,45), (17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13)(17,31,43,36)(18,30,44,35)(19,29,45,34)(20,28,46,33)(21,27,47,40)(22,26,48,39)(23,25,41,38)(24,32,42,37)>;
G:=Group( (1,25,38)(2,26,39)(3,27,40)(4,28,33)(5,29,34)(6,30,35)(7,31,36)(8,32,37)(9,46,20)(10,47,21)(11,48,22)(12,41,23)(13,42,24)(14,43,17)(15,44,18)(16,45,19), (9,20,46)(10,21,47)(11,22,48)(12,23,41)(13,24,42)(14,17,43)(15,18,44)(16,19,45), (17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,16)(6,15)(7,14)(8,13)(17,31,43,36)(18,30,44,35)(19,29,45,34)(20,28,46,33)(21,27,47,40)(22,26,48,39)(23,25,41,38)(24,32,42,37) );
G=PermutationGroup([[(1,25,38),(2,26,39),(3,27,40),(4,28,33),(5,29,34),(6,30,35),(7,31,36),(8,32,37),(9,46,20),(10,47,21),(11,48,22),(12,41,23),(13,42,24),(14,43,17),(15,44,18),(16,45,19)], [(9,20,46),(10,21,47),(11,22,48),(12,23,41),(13,24,42),(14,17,43),(15,18,44),(16,19,45)], [(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,41),(24,42),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,16),(6,15),(7,14),(8,13),(17,31,43,36),(18,30,44,35),(19,29,45,34),(20,28,46,33),(21,27,47,40),(22,26,48,39),(23,25,41,38),(24,32,42,37)]])
Matrix representation of C3⋊S3.4D8 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 41 | 0 | 0 | 0 | 0 |
16 | 41 | 0 | 0 | 0 | 0 |
0 | 0 | 46 | 0 | 0 | 0 |
0 | 0 | 0 | 46 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 0 |
0 | 0 | 0 | 0 | 0 | 27 |
37 | 40 | 0 | 0 | 0 | 0 |
57 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 0 |
0 | 0 | 0 | 0 | 0 | 27 |
0 | 0 | 46 | 27 | 0 | 0 |
0 | 0 | 0 | 27 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,72,72],[0,16,0,0,0,0,41,41,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,27,0,0,0,0,0,0,27],[37,57,0,0,0,0,40,36,0,0,0,0,0,0,0,0,46,0,0,0,0,0,27,27,0,0,27,0,0,0,0,0,0,27,0,0] >;
C3⋊S3.4D8 in GAP, Magma, Sage, TeX
C_3\rtimes S_3._4D_8
% in TeX
G:=Group("C3:S3.4D8");
// GroupNames label
G:=SmallGroup(288,417);
// by ID
G=gap.SmallGroup(288,417);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,176,675,80,9413,691,12550,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^8=1,e^2=c,a*b=b*a,c*a*c=a^-1,a*d=d*a,e*a*e^-1=a*b^-1,c*b*c=b^-1,b*d=d*b,e*b*e^-1=a^-1*b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations
Export