Extensions 1→N→G→Q→1 with N=C3xC24 and Q=C4

Direct product G=NxQ with N=C3xC24 and Q=C4
dρLabelID
C12xC24288C12xC24288,314

Semidirect products G=N:Q with N=C3xC24 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3xC24):1C4 = C8xC32:C4φ: C4/C1C4 ⊆ Aut C3xC24484(C3xC24):1C4288,414
(C3xC24):2C4 = (C3xC24):C4φ: C4/C1C4 ⊆ Aut C3xC24484(C3xC24):2C4288,415
(C3xC24):3C4 = C8:(C32:C4)φ: C4/C1C4 ⊆ Aut C3xC24484(C3xC24):3C4288,416
(C3xC24):4C4 = C3:S3.4D8φ: C4/C1C4 ⊆ Aut C3xC24484(C3xC24):4C4288,417
(C3xC24):5C4 = C24:1Dic3φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24):5C4288,293
(C3xC24):6C4 = C3xC24:1C4φ: C4/C2C2 ⊆ Aut C3xC2496(C3xC24):6C4288,252
(C3xC24):7C4 = C24:2Dic3φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24):7C4288,292
(C3xC24):8C4 = C3xC8:Dic3φ: C4/C2C2 ⊆ Aut C3xC2496(C3xC24):8C4288,251
(C3xC24):9C4 = C32xC2.D8φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24):9C4288,325
(C3xC24):10C4 = Dic3xC24φ: C4/C2C2 ⊆ Aut C3xC2496(C3xC24):10C4288,247
(C3xC24):11C4 = C8xC3:Dic3φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24):11C4288,288
(C3xC24):12C4 = C24:Dic3φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24):12C4288,290
(C3xC24):13C4 = C3xC24:C4φ: C4/C2C2 ⊆ Aut C3xC2496(C3xC24):13C4288,249
(C3xC24):14C4 = C32xC4.Q8φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24):14C4288,324
(C3xC24):15C4 = C32xC8:C4φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24):15C4288,315

Non-split extensions G=N.Q with N=C3xC24 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3xC24).1C4 = C32:2C32φ: C4/C1C4 ⊆ Aut C3xC24964(C3xC24).1C4288,188
(C3xC24).2C4 = C3:S3:3C16φ: C4/C1C4 ⊆ Aut C3xC24484(C3xC24).2C4288,412
(C3xC24).3C4 = C32:3M5(2)φ: C4/C1C4 ⊆ Aut C3xC24484(C3xC24).3C4288,413
(C3xC24).4C4 = (C3xC24).C4φ: C4/C1C4 ⊆ Aut C3xC24484(C3xC24).4C4288,418
(C3xC24).5C4 = C8.(C32:C4)φ: C4/C1C4 ⊆ Aut C3xC24484(C3xC24).5C4288,419
(C3xC24).6C4 = C12.59D12φ: C4/C2C2 ⊆ Aut C3xC24144(C3xC24).6C4288,294
(C3xC24).7C4 = C3xC24.C4φ: C4/C2C2 ⊆ Aut C3xC24482(C3xC24).7C4288,253
(C3xC24).8C4 = C3xC3:C32φ: C4/C2C2 ⊆ Aut C3xC24962(C3xC24).8C4288,64
(C3xC24).9C4 = C48.S3φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24).9C4288,65
(C3xC24).10C4 = C6xC3:C16φ: C4/C2C2 ⊆ Aut C3xC2496(C3xC24).10C4288,245
(C3xC24).11C4 = C2xC24.S3φ: C4/C2C2 ⊆ Aut C3xC24288(C3xC24).11C4288,286
(C3xC24).12C4 = C24.94D6φ: C4/C2C2 ⊆ Aut C3xC24144(C3xC24).12C4288,287
(C3xC24).13C4 = C3xC12.C8φ: C4/C2C2 ⊆ Aut C3xC24482(C3xC24).13C4288,246
(C3xC24).14C4 = C32xC8.C4φ: C4/C2C2 ⊆ Aut C3xC24144(C3xC24).14C4288,326
(C3xC24).15C4 = C32xM5(2)φ: C4/C2C2 ⊆ Aut C3xC24144(C3xC24).15C4288,328

׿
x
:
Z
F
o
wr
Q
<