Aliases: (C3×C24).4C4, C8.2(C32⋊C4), C3⋊Dic3.35D4, C32⋊4C8.7C4, C32⋊3(C8.C4), C32⋊M4(2).2C2, (C2×C3⋊S3).5Q8, (C8×C3⋊S3).12C2, C4.10(C2×C32⋊C4), (C3×C6).13(C4⋊C4), (C3×C12).14(C2×C4), C2.6(C4⋊(C32⋊C4)), (C4×C3⋊S3).82C22, SmallGroup(288,418)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C4×C3⋊S3 — C32⋊M4(2) — (C3×C24).C4 |
Generators and relations for (C3×C24).C4
G = < a,b,c | a3=b24=1, c4=b12, ab=ba, cac-1=a-1b8, cbc-1=a-1b19 >
Character table of (C3×C24).C4
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 18 | 4 | 4 | 2 | 9 | 9 | 4 | 4 | 2 | 2 | 18 | 18 | 36 | 36 | 36 | 36 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | 2 | 2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ11 | 2 | -2 | 0 | 2 | 2 | 0 | 2i | -2i | -2 | -2 | √-2 | -√-2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | complex lifted from C8.C4 |
ρ12 | 2 | -2 | 0 | 2 | 2 | 0 | -2i | 2i | -2 | -2 | -√-2 | √-2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | complex lifted from C8.C4 |
ρ13 | 2 | -2 | 0 | 2 | 2 | 0 | -2i | 2i | -2 | -2 | √-2 | -√-2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | complex lifted from C8.C4 |
ρ14 | 2 | -2 | 0 | 2 | 2 | 0 | 2i | -2i | -2 | -2 | -√-2 | √-2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | √-2 | complex lifted from C8.C4 |
ρ15 | 4 | 4 | 0 | 1 | -2 | 4 | 0 | 0 | -2 | 1 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | -2 | -2 | -2 | 1 | 1 | -2 | 1 | 1 | orthogonal lifted from C32⋊C4 |
ρ16 | 4 | 4 | 0 | -2 | 1 | 4 | 0 | 0 | 1 | -2 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | -2 | 1 | 1 | 1 | -2 | -2 | 1 | -2 | -2 | orthogonal lifted from C32⋊C4 |
ρ17 | 4 | 4 | 0 | -2 | 1 | 4 | 0 | 0 | 1 | -2 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | -2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ18 | 4 | 4 | 0 | 1 | -2 | 4 | 0 | 0 | -2 | 1 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ19 | 4 | 4 | 0 | -2 | 1 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 2 | 3i | 3i | -3i | 0 | 0 | -3i | 0 | 0 | complex lifted from C4⋊(C32⋊C4) |
ρ20 | 4 | 4 | 0 | 1 | -2 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 3i | -3i | 0 | 3i | -3i | complex lifted from C4⋊(C32⋊C4) |
ρ21 | 4 | 4 | 0 | 1 | -2 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | -3i | 3i | 0 | -3i | 3i | complex lifted from C4⋊(C32⋊C4) |
ρ22 | 4 | 4 | 0 | -2 | 1 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 2 | -3i | -3i | 3i | 0 | 0 | 3i | 0 | 0 | complex lifted from C4⋊(C32⋊C4) |
ρ23 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | -1 | 2 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | -2ζ83+ζ8 | -2ζ87+ζ85 | ζ87-2ζ85 | -√-2 | -√-2 | ζ83-2ζ8 | √-2 | √-2 | complex faithful |
ρ24 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 2 | -1 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | √-2 | -√-2 | -√-2 | -2ζ87+ζ85 | ζ87-2ζ85 | √-2 | -2ζ83+ζ8 | ζ83-2ζ8 | complex faithful |
ρ25 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 2 | -1 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | √-2 | -√-2 | -√-2 | ζ87-2ζ85 | -2ζ87+ζ85 | √-2 | ζ83-2ζ8 | -2ζ83+ζ8 | complex faithful |
ρ26 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | -1 | 2 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | ζ87-2ζ85 | ζ83-2ζ8 | -2ζ83+ζ8 | √-2 | √-2 | -2ζ87+ζ85 | -√-2 | -√-2 | complex faithful |
ρ27 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | -1 | 2 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | ζ83-2ζ8 | ζ87-2ζ85 | -2ζ87+ζ85 | -√-2 | -√-2 | -2ζ83+ζ8 | √-2 | √-2 | complex faithful |
ρ28 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 2 | -1 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | -√-2 | √-2 | √-2 | -2ζ83+ζ8 | ζ83-2ζ8 | -√-2 | -2ζ87+ζ85 | ζ87-2ζ85 | complex faithful |
ρ29 | 4 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 2 | -1 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | -√-2 | √-2 | √-2 | ζ83-2ζ8 | -2ζ83+ζ8 | -√-2 | ζ87-2ζ85 | -2ζ87+ζ85 | complex faithful |
ρ30 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | -1 | 2 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | -2ζ87+ζ85 | -2ζ83+ζ8 | ζ83-2ζ8 | √-2 | √-2 | ζ87-2ζ85 | -√-2 | -√-2 | complex faithful |
(1 9 24)(2 10 17)(3 11 18)(4 12 19)(5 13 20)(6 14 21)(7 15 22)(8 16 23)(25 41 33)(26 42 34)(27 43 35)(28 44 36)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 26 22 36 5 38 18 48)(2 29 23 39 6 41 19 27)(3 32 24 42 7 44 20 30)(4 35 17 45 8 47 21 33)(9 34 15 28 13 46 11 40)(10 37 16 31 14 25 12 43)
G:=sub<Sym(48)| (1,9,24)(2,10,17)(3,11,18)(4,12,19)(5,13,20)(6,14,21)(7,15,22)(8,16,23)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,26,22,36,5,38,18,48)(2,29,23,39,6,41,19,27)(3,32,24,42,7,44,20,30)(4,35,17,45,8,47,21,33)(9,34,15,28,13,46,11,40)(10,37,16,31,14,25,12,43)>;
G:=Group( (1,9,24)(2,10,17)(3,11,18)(4,12,19)(5,13,20)(6,14,21)(7,15,22)(8,16,23)(25,41,33)(26,42,34)(27,43,35)(28,44,36)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,26,22,36,5,38,18,48)(2,29,23,39,6,41,19,27)(3,32,24,42,7,44,20,30)(4,35,17,45,8,47,21,33)(9,34,15,28,13,46,11,40)(10,37,16,31,14,25,12,43) );
G=PermutationGroup([[(1,9,24),(2,10,17),(3,11,18),(4,12,19),(5,13,20),(6,14,21),(7,15,22),(8,16,23),(25,41,33),(26,42,34),(27,43,35),(28,44,36),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,26,22,36,5,38,18,48),(2,29,23,39,6,41,19,27),(3,32,24,42,7,44,20,30),(4,35,17,45,8,47,21,33),(9,34,15,28,13,46,11,40),(10,37,16,31,14,25,12,43)]])
Matrix representation of (C3×C24).C4 ►in GL4(𝔽73) generated by
72 | 1 | 0 | 0 |
72 | 0 | 0 | 0 |
0 | 0 | 72 | 1 |
0 | 0 | 72 | 0 |
10 | 0 | 0 | 0 |
0 | 10 | 0 | 0 |
0 | 0 | 22 | 51 |
0 | 0 | 22 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
46 | 27 | 0 | 0 |
0 | 27 | 0 | 0 |
G:=sub<GL(4,GF(73))| [72,72,0,0,1,0,0,0,0,0,72,72,0,0,1,0],[10,0,0,0,0,10,0,0,0,0,22,22,0,0,51,0],[0,0,46,0,0,0,27,27,1,0,0,0,0,1,0,0] >;
(C3×C24).C4 in GAP, Magma, Sage, TeX
(C_3\times C_{24}).C_4
% in TeX
G:=Group("(C3xC24).C4");
// GroupNames label
G:=SmallGroup(288,418);
// by ID
G=gap.SmallGroup(288,418);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,64,100,675,80,9413,691,12550,2372]);
// Polycyclic
G:=Group<a,b,c|a^3=b^24=1,c^4=b^12,a*b=b*a,c*a*c^-1=a^-1*b^8,c*b*c^-1=a^-1*b^19>;
// generators/relations
Export
Subgroup lattice of (C3×C24).C4 in TeX
Character table of (C3×C24).C4 in TeX