non-abelian, soluble, monomial
Aliases: Dic3≀C2, C62.5D4, C32⋊2C4≀C2, Dic32⋊8C2, D6⋊S3⋊2C4, C22.3S3≀C2, C32⋊2Q8⋊2C4, C3⋊Dic3.6D4, C62.C4⋊3C2, D6.4D6.1C2, C2.11(S32⋊C4), C3⋊Dic3.11(C2×C4), (C3×C6).11(C22⋊C4), (C2×C3⋊Dic3).3C22, SmallGroup(288,389)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — Dic3≀C2 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C2×C3⋊Dic3 — D6.4D6 — Dic3≀C2 |
C32 — C3×C6 — C3⋊Dic3 — Dic3≀C2 |
Generators and relations for Dic3≀C2
G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=a3b, dad=a-1b3, cbc-1=a2b3, bd=db, dcd=a3b3c3 >
Subgroups: 360 in 79 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, Q8, C32, Dic3, C12, D6, C2×C6, C42, M4(2), C4○D4, C3×S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C4≀C2, C3×Dic3, C3⋊Dic3, S3×C6, C62, C4×Dic3, D4⋊2S3, C32⋊2C8, S3×Dic3, D6⋊S3, C32⋊2Q8, C6×Dic3, C3×C3⋊D4, C2×C3⋊Dic3, Dic32, C62.C4, D6.4D6, Dic3≀C2
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C4≀C2, S3≀C2, S32⋊C4, Dic3≀C2
Character table of Dic3≀C2
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 2 | 12 | 4 | 4 | 6 | 6 | 6 | 6 | 9 | 9 | 12 | 18 | 4 | 4 | 4 | 4 | 8 | 24 | 36 | 36 | 12 | 12 | 12 | 12 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | -i | -i | i | -i | i | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | i | i | -i | i | -i | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | i | -i | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | -i | i | -1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | -2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | -1-i | -1+i | 1-i | 1+i | 2i | -2i | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1+i | 1+i | 1-i | -1-i | 0 | complex lifted from C4≀C2 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | 1+i | 1-i | -1+i | -1-i | 2i | -2i | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 1-i | -1-i | -1+i | 1+i | 0 | complex lifted from C4≀C2 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | -1+i | -1-i | 1+i | 1-i | -2i | 2i | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -1-i | 1-i | 1+i | -1+i | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | -2 | 0 | 0 | 2 | 2 | 1-i | 1+i | -1-i | -1+i | -2i | 2i | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 1+i | -1+i | -1-i | 1-i | 0 | complex lifted from C4≀C2 |
ρ15 | 4 | 4 | -4 | 2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 1 | 2 | 2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | orthogonal lifted from S32⋊C4 |
ρ16 | 4 | 4 | 4 | 0 | 1 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 4 | 2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | -2 | -2 | -2 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 1 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | 4 | 0 | 1 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | orthogonal lifted from S3≀C2 |
ρ20 | 4 | 4 | -4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 2 | -2 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from S32⋊C4 |
ρ21 | 4 | -4 | 0 | 0 | 1 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -3 | 3 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 1 | 0 | symplectic faithful, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 1 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -3 | 3 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 0 | symplectic faithful, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 1 | -2 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 2 | 3 | -3 | -1 | 0 | 0 | 0 | 0 | i | i | -i | -i | 0 | complex faithful |
ρ24 | 4 | 4 | -4 | 0 | 1 | -2 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | -2 | -1 | -1 | 1 | 2 | 0 | 0 | 0 | i | -i | i | -i | 0 | complex lifted from S32⋊C4 |
ρ25 | 4 | 4 | -4 | 0 | 1 | -2 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | -2 | -1 | -1 | 1 | 2 | 0 | 0 | 0 | -i | i | -i | i | 0 | complex lifted from S32⋊C4 |
ρ26 | 4 | -4 | 0 | 0 | 1 | -2 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 2 | 3 | -3 | -1 | 0 | 0 | 0 | 0 | -i | -i | i | i | 0 | complex faithful |
ρ27 | 8 | -8 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 9 22)(2 14 23 6 10 19)(3 24 11)(4 21 12 8 17 16)(5 13 18)(7 20 15)
(1 13 22 5 9 18)(2 19 10 6 23 14)(3 20 11 7 24 15)(4 16 17 8 12 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 4)(2 7)(3 6)(5 8)(9 12)(10 15)(11 14)(13 16)(17 22)(18 21)(19 24)(20 23)
G:=sub<Sym(24)| (1,9,22)(2,14,23,6,10,19)(3,24,11)(4,21,12,8,17,16)(5,13,18)(7,20,15), (1,13,22,5,9,18)(2,19,10,6,23,14)(3,20,11,7,24,15)(4,16,17,8,12,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4)(2,7)(3,6)(5,8)(9,12)(10,15)(11,14)(13,16)(17,22)(18,21)(19,24)(20,23)>;
G:=Group( (1,9,22)(2,14,23,6,10,19)(3,24,11)(4,21,12,8,17,16)(5,13,18)(7,20,15), (1,13,22,5,9,18)(2,19,10,6,23,14)(3,20,11,7,24,15)(4,16,17,8,12,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4)(2,7)(3,6)(5,8)(9,12)(10,15)(11,14)(13,16)(17,22)(18,21)(19,24)(20,23) );
G=PermutationGroup([[(1,9,22),(2,14,23,6,10,19),(3,24,11),(4,21,12,8,17,16),(5,13,18),(7,20,15)], [(1,13,22,5,9,18),(2,19,10,6,23,14),(3,20,11,7,24,15),(4,16,17,8,12,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,4),(2,7),(3,6),(5,8),(9,12),(10,15),(11,14),(13,16),(17,22),(18,21),(19,24),(20,23)]])
G:=TransitiveGroup(24,600);
(1 14 22)(2 19 15 6 23 11)(3 24 16)(4 13 17 8 9 21)(5 10 18)(7 20 12)
(1 18 14 5 22 10)(2 19 15 6 23 11)(3 12 24 7 16 20)(4 13 17 8 9 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 4)(2 7)(3 6)(5 8)(9 22)(10 21)(11 24)(12 23)(13 18)(14 17)(15 20)(16 19)
G:=sub<Sym(24)| (1,14,22)(2,19,15,6,23,11)(3,24,16)(4,13,17,8,9,21)(5,10,18)(7,20,12), (1,18,14,5,22,10)(2,19,15,6,23,11)(3,12,24,7,16,20)(4,13,17,8,9,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4)(2,7)(3,6)(5,8)(9,22)(10,21)(11,24)(12,23)(13,18)(14,17)(15,20)(16,19)>;
G:=Group( (1,14,22)(2,19,15,6,23,11)(3,24,16)(4,13,17,8,9,21)(5,10,18)(7,20,12), (1,18,14,5,22,10)(2,19,15,6,23,11)(3,12,24,7,16,20)(4,13,17,8,9,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4)(2,7)(3,6)(5,8)(9,22)(10,21)(11,24)(12,23)(13,18)(14,17)(15,20)(16,19) );
G=PermutationGroup([[(1,14,22),(2,19,15,6,23,11),(3,24,16),(4,13,17,8,9,21),(5,10,18),(7,20,12)], [(1,18,14,5,22,10),(2,19,15,6,23,11),(3,12,24,7,16,20),(4,13,17,8,9,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,4),(2,7),(3,6),(5,8),(9,22),(10,21),(11,24),(12,23),(13,18),(14,17),(15,20),(16,19)]])
G:=TransitiveGroup(24,604);
Matrix representation of Dic3≀C2 ►in GL4(𝔽5) generated by
0 | 0 | 0 | 4 |
0 | 1 | 3 | 0 |
0 | 3 | 0 | 0 |
1 | 0 | 0 | 4 |
1 | 0 | 0 | 4 |
0 | 1 | 3 | 0 |
0 | 3 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
2 | 0 | 0 | 3 |
1 | 0 | 0 | 0 |
0 | 1 | 3 | 0 |
0 | 0 | 3 | 0 |
4 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
0 | 1 | 3 | 0 |
G:=sub<GL(4,GF(5))| [0,0,0,1,0,1,3,0,0,3,0,0,4,0,0,4],[1,0,0,1,0,1,3,0,0,3,0,0,4,0,0,0],[0,2,1,0,1,0,0,1,0,0,0,3,0,3,0,0],[0,4,2,0,0,0,0,1,3,0,0,3,0,1,0,0] >;
Dic3≀C2 in GAP, Magma, Sage, TeX
{\rm Dic}_3\wr C_2
% in TeX
G:=Group("Dic3wrC2");
// GroupNames label
G:=SmallGroup(288,389);
// by ID
G=gap.SmallGroup(288,389);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,64,422,100,675,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^3*b,d*a*d=a^-1*b^3,c*b*c^-1=a^2*b^3,b*d=d*b,d*c*d=a^3*b^3*c^3>;
// generators/relations
Export