Extensions 1→N→G→Q→1 with N=D6⋊S3 and Q=C4

Direct product G=N×Q with N=D6⋊S3 and Q=C4
dρLabelID
C4×D6⋊S396C4xD6:S3288,549

Semidirect products G=N:Q with N=D6⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
D6⋊S31C4 = C3⋊S3.2D8φ: C4/C1C4 ⊆ Out D6⋊S3244D6:S3:1C4288,377
D6⋊S32C4 = Dic3≀C2φ: C4/C1C4 ⊆ Out D6⋊S3244-D6:S3:2C4288,389
D6⋊S33C4 = C32⋊C4≀C2φ: C4/C2C2 ⊆ Out D6⋊S3484D6:S3:3C4288,379
D6⋊S34C4 = C62.3D4φ: C4/C2C2 ⊆ Out D6⋊S348D6:S3:4C4288,387
D6⋊S35C4 = C62.49C23φ: C4/C2C2 ⊆ Out D6⋊S396D6:S3:5C4288,527
D6⋊S36C4 = C62.72C23φ: C4/C2C2 ⊆ Out D6⋊S396D6:S3:6C4288,550

Non-split extensions G=N.Q with N=D6⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
D6⋊S3.1C4 = C24.64D6φ: C4/C2C2 ⊆ Out D6⋊S3484D6:S3.1C4288,452
D6⋊S3.2C4 = C24.D6φ: C4/C2C2 ⊆ Out D6⋊S3484D6:S3.2C4288,453
D6⋊S3.3C4 = C24.63D6φ: trivial image484D6:S3.3C4288,451

׿
×
𝔽