Extensions 1→N→G→Q→1 with N=D6 and Q=C2×Dic3

Direct product G=N×Q with N=D6 and Q=C2×Dic3
dρLabelID
C22×S3×Dic396C2^2xS3xDic3288,969

Semidirect products G=N:Q with N=D6 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
D61(C2×Dic3) = Dic3×D12φ: C2×Dic3/Dic3C2 ⊆ Out D696D6:1(C2xDic3)288,540
D62(C2×Dic3) = D12⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Out D696D6:2(C2xDic3)288,546
D63(C2×Dic3) = Dic3×C3⋊D4φ: C2×Dic3/Dic3C2 ⊆ Out D648D6:3(C2xDic3)288,620
D64(C2×Dic3) = C62.115C23φ: C2×Dic3/Dic3C2 ⊆ Out D648D6:4(C2xDic3)288,621
D65(C2×Dic3) = C2×D6⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out D696D6:5(C2xDic3)288,608
D66(C2×Dic3) = S3×C6.D4φ: C2×Dic3/C2×C6C2 ⊆ Out D648D6:6(C2xDic3)288,616

Non-split extensions G=N.Q with N=D6 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
D6.1(C2×Dic3) = D12.2Dic3φ: C2×Dic3/Dic3C2 ⊆ Out D6484D6.1(C2xDic3)288,462
D6.2(C2×Dic3) = D12.Dic3φ: C2×Dic3/Dic3C2 ⊆ Out D6484D6.2(C2xDic3)288,463
D6.3(C2×Dic3) = C2×D6.Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out D696D6.3(C2xDic3)288,467
D6.4(C2×Dic3) = C62.11C23φ: C2×Dic3/C2×C6C2 ⊆ Out D696D6.4(C2xDic3)288,489
D6.5(C2×Dic3) = C62.25C23φ: C2×Dic3/C2×C6C2 ⊆ Out D696D6.5(C2xDic3)288,503
D6.6(C2×Dic3) = C2×S3×C3⋊C8φ: trivial image96D6.6(C2xDic3)288,460
D6.7(C2×Dic3) = S3×C4.Dic3φ: trivial image484D6.7(C2xDic3)288,461
D6.8(C2×Dic3) = C4×S3×Dic3φ: trivial image96D6.8(C2xDic3)288,523
D6.9(C2×Dic3) = S3×C4⋊Dic3φ: trivial image96D6.9(C2xDic3)288,537

׿
×
𝔽