direct product, metabelian, supersoluble, monomial
Aliases: Dic3×C3⋊D4, C62.114C23, Dic32⋊5C2, C62⋊6(C2×C4), C23.25S32, C3⋊4(D4×Dic3), C32⋊14(C4×D4), D6⋊Dic3⋊7C2, D6⋊3(C2×Dic3), C6.169(S3×D4), C62⋊5C4⋊9C2, (C3×Dic3)⋊16D4, C22⋊3(S3×Dic3), (C22×C6).74D6, Dic3⋊1(C2×Dic3), C6.68(C4○D12), (C22×Dic3)⋊9S3, (C22×S3).50D6, Dic3⋊Dic3⋊28C2, C6.55(D4⋊2S3), (C2×Dic3).115D6, C2.7(D6.3D6), (C2×C62).33C22, C6.19(C22×Dic3), (C6×Dic3).119C22, (C2×C6)⋊6(C4×S3), C3⋊6(C4×C3⋊D4), C6.98(S3×C2×C4), (S3×C6)⋊9(C2×C4), (C3×C3⋊D4)⋊1C4, C2.7(S3×C3⋊D4), C22.55(C2×S32), (C2×S3×Dic3)⋊21C2, (Dic3×C2×C6)⋊15C2, (C2×C6)⋊8(C2×Dic3), (C2×C3⋊D4).7S3, (C6×C3⋊D4).2C2, C6.66(C2×C3⋊D4), C2.19(C2×S3×Dic3), (C3×Dic3)⋊5(C2×C4), (C3×C6).160(C2×D4), (S3×C2×C6).46C22, (C3×C6).85(C4○D4), (C3×C6).69(C22×C4), (C2×C6).133(C22×S3), (C2×C3⋊Dic3).70C22, SmallGroup(288,620)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic3×C3⋊D4
G = < a,b,c,d,e | a6=c3=d4=e2=1, b2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 634 in 205 conjugacy classes, 72 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3×S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C4×D4, C3×Dic3, C3×Dic3, C3⋊Dic3, S3×C6, S3×C6, C62, C62, C62, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, S3×C2×C4, C22×Dic3, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, S3×Dic3, C6×Dic3, C6×Dic3, C3×C3⋊D4, C2×C3⋊Dic3, S3×C2×C6, C2×C62, C4×C3⋊D4, D4×Dic3, Dic32, D6⋊Dic3, Dic3⋊Dic3, C62⋊5C4, C2×S3×Dic3, Dic3×C2×C6, C6×C3⋊D4, Dic3×C3⋊D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22×C4, C2×D4, C4○D4, C4×S3, C2×Dic3, C3⋊D4, C22×S3, C4×D4, S32, S3×C2×C4, C4○D12, S3×D4, D4⋊2S3, C22×Dic3, C2×C3⋊D4, S3×Dic3, C2×S32, C4×C3⋊D4, D4×Dic3, C2×S3×Dic3, D6.3D6, S3×C3⋊D4, Dic3×C3⋊D4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 21 4 24)(2 20 5 23)(3 19 6 22)(7 42 10 39)(8 41 11 38)(9 40 12 37)(13 29 16 26)(14 28 17 25)(15 27 18 30)(31 44 34 47)(32 43 35 46)(33 48 36 45)
(1 5 3)(2 6 4)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 47 45)(44 48 46)
(1 39 18 33)(2 40 13 34)(3 41 14 35)(4 42 15 36)(5 37 16 31)(6 38 17 32)(7 30 48 21)(8 25 43 22)(9 26 44 23)(10 27 45 24)(11 28 46 19)(12 29 47 20)
(1 33)(2 34)(3 35)(4 36)(5 31)(6 32)(7 30)(8 25)(9 26)(10 27)(11 28)(12 29)(13 40)(14 41)(15 42)(16 37)(17 38)(18 39)(19 46)(20 47)(21 48)(22 43)(23 44)(24 45)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,21,4,24)(2,20,5,23)(3,19,6,22)(7,42,10,39)(8,41,11,38)(9,40,12,37)(13,29,16,26)(14,28,17,25)(15,27,18,30)(31,44,34,47)(32,43,35,46)(33,48,36,45), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,47,45)(44,48,46), (1,39,18,33)(2,40,13,34)(3,41,14,35)(4,42,15,36)(5,37,16,31)(6,38,17,32)(7,30,48,21)(8,25,43,22)(9,26,44,23)(10,27,45,24)(11,28,46,19)(12,29,47,20), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,30)(8,25)(9,26)(10,27)(11,28)(12,29)(13,40)(14,41)(15,42)(16,37)(17,38)(18,39)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,21,4,24)(2,20,5,23)(3,19,6,22)(7,42,10,39)(8,41,11,38)(9,40,12,37)(13,29,16,26)(14,28,17,25)(15,27,18,30)(31,44,34,47)(32,43,35,46)(33,48,36,45), (1,5,3)(2,6,4)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,47,45)(44,48,46), (1,39,18,33)(2,40,13,34)(3,41,14,35)(4,42,15,36)(5,37,16,31)(6,38,17,32)(7,30,48,21)(8,25,43,22)(9,26,44,23)(10,27,45,24)(11,28,46,19)(12,29,47,20), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,30)(8,25)(9,26)(10,27)(11,28)(12,29)(13,40)(14,41)(15,42)(16,37)(17,38)(18,39)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,21,4,24),(2,20,5,23),(3,19,6,22),(7,42,10,39),(8,41,11,38),(9,40,12,37),(13,29,16,26),(14,28,17,25),(15,27,18,30),(31,44,34,47),(32,43,35,46),(33,48,36,45)], [(1,5,3),(2,6,4),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,47,45),(44,48,46)], [(1,39,18,33),(2,40,13,34),(3,41,14,35),(4,42,15,36),(5,37,16,31),(6,38,17,32),(7,30,48,21),(8,25,43,22),(9,26,44,23),(10,27,45,24),(11,28,46,19),(12,29,47,20)], [(1,33),(2,34),(3,35),(4,36),(5,31),(6,32),(7,30),(8,25),(9,26),(10,27),(11,28),(12,29),(13,40),(14,41),(15,42),(16,37),(17,38),(18,39),(19,46),(20,47),(21,48),(22,43),(23,44),(24,45)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | ··· | 6J | 6K | ··· | 6S | 6T | 6U | 12A | ··· | 12H | 12I | 12J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 2 | 2 | 4 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | 12 | 6 | ··· | 6 | 12 | 12 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | + | - | - | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | S3 | D4 | D6 | Dic3 | D6 | D6 | C4○D4 | C3⋊D4 | C4×S3 | C4○D12 | S32 | S3×D4 | D4⋊2S3 | S3×Dic3 | C2×S32 | D6.3D6 | S3×C3⋊D4 |
kernel | Dic3×C3⋊D4 | Dic32 | D6⋊Dic3 | Dic3⋊Dic3 | C62⋊5C4 | C2×S3×Dic3 | Dic3×C2×C6 | C6×C3⋊D4 | C3×C3⋊D4 | C22×Dic3 | C2×C3⋊D4 | C3×Dic3 | C2×Dic3 | C3⋊D4 | C22×S3 | C22×C6 | C3×C6 | Dic3 | C2×C6 | C6 | C23 | C6 | C6 | C22 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8 | 1 | 1 | 2 | 3 | 4 | 1 | 2 | 2 | 4 | 4 | 4 | 1 | 1 | 1 | 2 | 1 | 2 | 2 |
Matrix representation of Dic3×C3⋊D4 ►in GL8(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1],[12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,11,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12] >;
Dic3×C3⋊D4 in GAP, Magma, Sage, TeX
{\rm Dic}_3\times C_3\rtimes D_4
% in TeX
G:=Group("Dic3xC3:D4");
// GroupNames label
G:=SmallGroup(288,620);
// by ID
G=gap.SmallGroup(288,620);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,422,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=c^3=d^4=e^2=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations