Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C18

Direct product G=NxQ with N=C2xD4 and Q=C18
dρLabelID
D4xC2xC18144D4xC2xC18288,368

Semidirect products G=N:Q with N=C2xD4 and Q=C18
extensionφ:Q→Out NdρLabelID
(C2xD4):1C18 = C9xC22wrC2φ: C18/C9C2 ⊆ Out C2xD472(C2xD4):1C18288,170
(C2xD4):2C18 = C9xC4:D4φ: C18/C9C2 ⊆ Out C2xD4144(C2xD4):2C18288,171
(C2xD4):3C18 = C9xC4:1D4φ: C18/C9C2 ⊆ Out C2xD4144(C2xD4):3C18288,177
(C2xD4):4C18 = D8xC18φ: C18/C9C2 ⊆ Out C2xD4144(C2xD4):4C18288,182
(C2xD4):5C18 = C9xC8:C22φ: C18/C9C2 ⊆ Out C2xD4724(C2xD4):5C18288,186
(C2xD4):6C18 = C9x2+ 1+4φ: C18/C9C2 ⊆ Out C2xD4724(C2xD4):6C18288,371
(C2xD4):7C18 = C4oD4xC18φ: trivial image144(C2xD4):7C18288,370

Non-split extensions G=N.Q with N=C2xD4 and Q=C18
extensionφ:Q→Out NdρLabelID
(C2xD4).1C18 = C9xC23:C4φ: C18/C9C2 ⊆ Out C2xD4724(C2xD4).1C18288,49
(C2xD4).2C18 = C9xC4.D4φ: C18/C9C2 ⊆ Out C2xD4724(C2xD4).2C18288,50
(C2xD4).3C18 = C9xD4:C4φ: C18/C9C2 ⊆ Out C2xD4144(C2xD4).3C18288,52
(C2xD4).4C18 = C9xC22.D4φ: C18/C9C2 ⊆ Out C2xD4144(C2xD4).4C18288,173
(C2xD4).5C18 = C9xC4.4D4φ: C18/C9C2 ⊆ Out C2xD4144(C2xD4).5C18288,174
(C2xD4).6C18 = SD16xC18φ: C18/C9C2 ⊆ Out C2xD4144(C2xD4).6C18288,183
(C2xD4).7C18 = D4xC36φ: trivial image144(C2xD4).7C18288,168

׿
x
:
Z
F
o
wr
Q
<