Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C18

Direct product G=N×Q with N=C2×D4 and Q=C18
dρLabelID
D4×C2×C18144D4xC2xC18288,368

Semidirect products G=N:Q with N=C2×D4 and Q=C18
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1C18 = C9×C22≀C2φ: C18/C9C2 ⊆ Out C2×D472(C2xD4):1C18288,170
(C2×D4)⋊2C18 = C9×C4⋊D4φ: C18/C9C2 ⊆ Out C2×D4144(C2xD4):2C18288,171
(C2×D4)⋊3C18 = C9×C41D4φ: C18/C9C2 ⊆ Out C2×D4144(C2xD4):3C18288,177
(C2×D4)⋊4C18 = D8×C18φ: C18/C9C2 ⊆ Out C2×D4144(C2xD4):4C18288,182
(C2×D4)⋊5C18 = C9×C8⋊C22φ: C18/C9C2 ⊆ Out C2×D4724(C2xD4):5C18288,186
(C2×D4)⋊6C18 = C9×2+ 1+4φ: C18/C9C2 ⊆ Out C2×D4724(C2xD4):6C18288,371
(C2×D4)⋊7C18 = C4○D4×C18φ: trivial image144(C2xD4):7C18288,370

Non-split extensions G=N.Q with N=C2×D4 and Q=C18
extensionφ:Q→Out NdρLabelID
(C2×D4).1C18 = C9×C23⋊C4φ: C18/C9C2 ⊆ Out C2×D4724(C2xD4).1C18288,49
(C2×D4).2C18 = C9×C4.D4φ: C18/C9C2 ⊆ Out C2×D4724(C2xD4).2C18288,50
(C2×D4).3C18 = C9×D4⋊C4φ: C18/C9C2 ⊆ Out C2×D4144(C2xD4).3C18288,52
(C2×D4).4C18 = C9×C22.D4φ: C18/C9C2 ⊆ Out C2×D4144(C2xD4).4C18288,173
(C2×D4).5C18 = C9×C4.4D4φ: C18/C9C2 ⊆ Out C2×D4144(C2xD4).5C18288,174
(C2×D4).6C18 = SD16×C18φ: C18/C9C2 ⊆ Out C2×D4144(C2xD4).6C18288,183
(C2×D4).7C18 = D4×C36φ: trivial image144(C2xD4).7C18288,168

׿
×
𝔽