Copied to
clipboard

G = C9xC4.D4order 288 = 25·32

Direct product of C9 and C4.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C9xC4.D4, C23.C36, C36.58D4, M4(2):3C18, C4.9(D4xC9), (C6xD4).7C6, (D4xC18).8C2, (C2xD4).2C18, C12.67(C3xD4), (C9xM4(2)):9C2, (C22xC6).3C12, (C22xC18).1C4, C22.3(C2xC36), (C2xC36).58C22, (C3xM4(2)).3C6, C18.22(C22:C4), C3.(C3xC4.D4), (C2xC4).1(C2xC18), C2.4(C9xC22:C4), (C3xC4.D4).C3, (C2xC6).24(C2xC12), (C2xC18).20(C2xC4), (C2xC12).60(C2xC6), C6.22(C3xC22:C4), SmallGroup(288,50)

Series: Derived Chief Lower central Upper central

C1C22 — C9xC4.D4
C1C2C6C12C2xC12C2xC36C9xM4(2) — C9xC4.D4
C1C2C22 — C9xC4.D4
C1C18C2xC36 — C9xC4.D4

Generators and relations for C9xC4.D4
 G = < a,b,c,d | a9=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

Subgroups: 126 in 69 conjugacy classes, 36 normal (18 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2xC4, D4, C23, C9, C12, C2xC6, C2xC6, M4(2), C2xD4, C18, C18, C24, C2xC12, C3xD4, C22xC6, C4.D4, C36, C2xC18, C2xC18, C3xM4(2), C6xD4, C72, C2xC36, D4xC9, C22xC18, C3xC4.D4, C9xM4(2), D4xC18, C9xC4.D4
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, C9, C12, C2xC6, C22:C4, C18, C2xC12, C3xD4, C4.D4, C36, C2xC18, C3xC22:C4, C2xC36, D4xC9, C3xC4.D4, C9xC22:C4, C9xC4.D4

Smallest permutation representation of C9xC4.D4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 59 42 53)(2 60 43 54)(3 61 44 46)(4 62 45 47)(5 63 37 48)(6 55 38 49)(7 56 39 50)(8 57 40 51)(9 58 41 52)(10 34 20 72)(11 35 21 64)(12 36 22 65)(13 28 23 66)(14 29 24 67)(15 30 25 68)(16 31 26 69)(17 32 27 70)(18 33 19 71)
(1 66 59 23 42 28 53 13)(2 67 60 24 43 29 54 14)(3 68 61 25 44 30 46 15)(4 69 62 26 45 31 47 16)(5 70 63 27 37 32 48 17)(6 71 55 19 38 33 49 18)(7 72 56 20 39 34 50 10)(8 64 57 21 40 35 51 11)(9 65 58 22 41 36 52 12)
(1 28 59 23 42 66 53 13)(2 29 60 24 43 67 54 14)(3 30 61 25 44 68 46 15)(4 31 62 26 45 69 47 16)(5 32 63 27 37 70 48 17)(6 33 55 19 38 71 49 18)(7 34 56 20 39 72 50 10)(8 35 57 21 40 64 51 11)(9 36 58 22 41 65 52 12)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,59,42,53)(2,60,43,54)(3,61,44,46)(4,62,45,47)(5,63,37,48)(6,55,38,49)(7,56,39,50)(8,57,40,51)(9,58,41,52)(10,34,20,72)(11,35,21,64)(12,36,22,65)(13,28,23,66)(14,29,24,67)(15,30,25,68)(16,31,26,69)(17,32,27,70)(18,33,19,71), (1,66,59,23,42,28,53,13)(2,67,60,24,43,29,54,14)(3,68,61,25,44,30,46,15)(4,69,62,26,45,31,47,16)(5,70,63,27,37,32,48,17)(6,71,55,19,38,33,49,18)(7,72,56,20,39,34,50,10)(8,64,57,21,40,35,51,11)(9,65,58,22,41,36,52,12), (1,28,59,23,42,66,53,13)(2,29,60,24,43,67,54,14)(3,30,61,25,44,68,46,15)(4,31,62,26,45,69,47,16)(5,32,63,27,37,70,48,17)(6,33,55,19,38,71,49,18)(7,34,56,20,39,72,50,10)(8,35,57,21,40,64,51,11)(9,36,58,22,41,65,52,12)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,59,42,53)(2,60,43,54)(3,61,44,46)(4,62,45,47)(5,63,37,48)(6,55,38,49)(7,56,39,50)(8,57,40,51)(9,58,41,52)(10,34,20,72)(11,35,21,64)(12,36,22,65)(13,28,23,66)(14,29,24,67)(15,30,25,68)(16,31,26,69)(17,32,27,70)(18,33,19,71), (1,66,59,23,42,28,53,13)(2,67,60,24,43,29,54,14)(3,68,61,25,44,30,46,15)(4,69,62,26,45,31,47,16)(5,70,63,27,37,32,48,17)(6,71,55,19,38,33,49,18)(7,72,56,20,39,34,50,10)(8,64,57,21,40,35,51,11)(9,65,58,22,41,36,52,12), (1,28,59,23,42,66,53,13)(2,29,60,24,43,67,54,14)(3,30,61,25,44,68,46,15)(4,31,62,26,45,69,47,16)(5,32,63,27,37,70,48,17)(6,33,55,19,38,71,49,18)(7,34,56,20,39,72,50,10)(8,35,57,21,40,64,51,11)(9,36,58,22,41,65,52,12) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,59,42,53),(2,60,43,54),(3,61,44,46),(4,62,45,47),(5,63,37,48),(6,55,38,49),(7,56,39,50),(8,57,40,51),(9,58,41,52),(10,34,20,72),(11,35,21,64),(12,36,22,65),(13,28,23,66),(14,29,24,67),(15,30,25,68),(16,31,26,69),(17,32,27,70),(18,33,19,71)], [(1,66,59,23,42,28,53,13),(2,67,60,24,43,29,54,14),(3,68,61,25,44,30,46,15),(4,69,62,26,45,31,47,16),(5,70,63,27,37,32,48,17),(6,71,55,19,38,33,49,18),(7,72,56,20,39,34,50,10),(8,64,57,21,40,35,51,11),(9,65,58,22,41,36,52,12)], [(1,28,59,23,42,66,53,13),(2,29,60,24,43,67,54,14),(3,30,61,25,44,68,46,15),(4,31,62,26,45,69,47,16),(5,32,63,27,37,70,48,17),(6,33,55,19,38,71,49,18),(7,34,56,20,39,72,50,10),(8,35,57,21,40,64,51,11),(9,36,58,22,41,65,52,12)]])

99 conjugacy classes

class 1 2A2B2C2D3A3B4A4B6A6B6C6D6E6F6G6H8A8B8C8D9A···9F12A12B12C12D18A···18F18G···18L18M···18X24A···24H36A···36L72A···72X
order1222233446666666688889···91212121218···1818···1818···1824···2436···3672···72
size1124411221122444444441···122221···12···24···44···42···24···4

99 irreducible representations

dim111111111111222444
type+++++
imageC1C2C2C3C4C6C6C9C12C18C18C36D4C3xD4D4xC9C4.D4C3xC4.D4C9xC4.D4
kernelC9xC4.D4C9xM4(2)D4xC18C3xC4.D4C22xC18C3xM4(2)C6xD4C4.D4C22xC6M4(2)C2xD4C23C36C12C4C9C3C1
# reps121244268126242412126

Matrix representation of C9xC4.D4 in GL6(F73)

400000
040000
001000
000100
000010
000001
,
100000
010000
00727100
001100
0004601
002727720
,
010000
7200000
00270710
00460172
0001460
0000270
,
010000
100000
00270710
000011
0001460
0010270

G:=sub<GL(6,GF(73))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,27,0,0,71,1,46,27,0,0,0,0,0,72,0,0,0,0,1,0],[0,72,0,0,0,0,1,0,0,0,0,0,0,0,27,46,0,0,0,0,0,0,1,0,0,0,71,1,46,27,0,0,0,72,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,27,0,0,1,0,0,0,0,1,0,0,0,71,1,46,27,0,0,0,1,0,0] >;

C9xC4.D4 in GAP, Magma, Sage, TeX

C_9\times C_4.D_4
% in TeX

G:=Group("C9xC4.D4");
// GroupNames label

G:=SmallGroup(288,50);
// by ID

G=gap.SmallGroup(288,50);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-2,168,197,268,4371,2951,242]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<