Extensions 1→N→G→Q→1 with N=S3xC6 and Q=C2xC4

Direct product G=NxQ with N=S3xC6 and Q=C2xC4
dρLabelID
S3xC22xC1296S3xC2^2xC12288,989

Semidirect products G=N:Q with N=S3xC6 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(S3xC6):1(C2xC4) = C62.49C23φ: C2xC4/C2C22 ⊆ Out S3xC696(S3xC6):1(C2xC4)288,527
(S3xC6):2(C2xC4) = Dic3:4D12φ: C2xC4/C2C22 ⊆ Out S3xC648(S3xC6):2(C2xC4)288,528
(S3xC6):3(C2xC4) = C62.51C23φ: C2xC4/C2C22 ⊆ Out S3xC648(S3xC6):3(C2xC4)288,529
(S3xC6):4(C2xC4) = Dic3xD12φ: C2xC4/C2C22 ⊆ Out S3xC696(S3xC6):4(C2xC4)288,540
(S3xC6):5(C2xC4) = D12:Dic3φ: C2xC4/C2C22 ⊆ Out S3xC696(S3xC6):5(C2xC4)288,546
(S3xC6):6(C2xC4) = C62.72C23φ: C2xC4/C2C22 ⊆ Out S3xC696(S3xC6):6(C2xC4)288,550
(S3xC6):7(C2xC4) = S3xD6:C4φ: C2xC4/C2C22 ⊆ Out S3xC648(S3xC6):7(C2xC4)288,568
(S3xC6):8(C2xC4) = C62.91C23φ: C2xC4/C2C22 ⊆ Out S3xC648(S3xC6):8(C2xC4)288,569
(S3xC6):9(C2xC4) = Dic3xC3:D4φ: C2xC4/C2C22 ⊆ Out S3xC648(S3xC6):9(C2xC4)288,620
(S3xC6):10(C2xC4) = C62.115C23φ: C2xC4/C2C22 ⊆ Out S3xC648(S3xC6):10(C2xC4)288,621
(S3xC6):11(C2xC4) = C4xD6:S3φ: C2xC4/C4C2 ⊆ Out S3xC696(S3xC6):11(C2xC4)288,549
(S3xC6):12(C2xC4) = C4xC3:D12φ: C2xC4/C4C2 ⊆ Out S3xC648(S3xC6):12(C2xC4)288,551
(S3xC6):13(C2xC4) = C62.74C23φ: C2xC4/C4C2 ⊆ Out S3xC648(S3xC6):13(C2xC4)288,552
(S3xC6):14(C2xC4) = C12xD12φ: C2xC4/C4C2 ⊆ Out S3xC696(S3xC6):14(C2xC4)288,644
(S3xC6):15(C2xC4) = C3xDic3:4D4φ: C2xC4/C4C2 ⊆ Out S3xC648(S3xC6):15(C2xC4)288,652
(S3xC6):16(C2xC4) = C3xDic3:5D4φ: C2xC4/C4C2 ⊆ Out S3xC696(S3xC6):16(C2xC4)288,664
(S3xC6):17(C2xC4) = C12xC3:D4φ: C2xC4/C4C2 ⊆ Out S3xC648(S3xC6):17(C2xC4)288,699
(S3xC6):18(C2xC4) = S32xC2xC4φ: C2xC4/C4C2 ⊆ Out S3xC648(S3xC6):18(C2xC4)288,950
(S3xC6):19(C2xC4) = C2xD6:Dic3φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6):19(C2xC4)288,608
(S3xC6):20(C2xC4) = S3xC6.D4φ: C2xC4/C22C2 ⊆ Out S3xC648(S3xC6):20(C2xC4)288,616
(S3xC6):21(C2xC4) = C3xS3xC22:C4φ: C2xC4/C22C2 ⊆ Out S3xC648(S3xC6):21(C2xC4)288,651
(S3xC6):22(C2xC4) = C6xD6:C4φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6):22(C2xC4)288,698
(S3xC6):23(C2xC4) = C22xS3xDic3φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6):23(C2xC4)288,969

Non-split extensions G=N.Q with N=S3xC6 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(S3xC6).1(C2xC4) = C24:D6φ: C2xC4/C2C22 ⊆ Out S3xC6484(S3xC6).1(C2xC4)288,439
(S3xC6).2(C2xC4) = C24.64D6φ: C2xC4/C2C22 ⊆ Out S3xC6484(S3xC6).2(C2xC4)288,452
(S3xC6).3(C2xC4) = C24.D6φ: C2xC4/C2C22 ⊆ Out S3xC6484(S3xC6).3(C2xC4)288,453
(S3xC6).4(C2xC4) = D12.2Dic3φ: C2xC4/C2C22 ⊆ Out S3xC6484(S3xC6).4(C2xC4)288,462
(S3xC6).5(C2xC4) = D12.Dic3φ: C2xC4/C2C22 ⊆ Out S3xC6484(S3xC6).5(C2xC4)288,463
(S3xC6).6(C2xC4) = C62.47C23φ: C2xC4/C2C22 ⊆ Out S3xC696(S3xC6).6(C2xC4)288,525
(S3xC6).7(C2xC4) = C62.48C23φ: C2xC4/C2C22 ⊆ Out S3xC696(S3xC6).7(C2xC4)288,526
(S3xC6).8(C2xC4) = S32xC8φ: C2xC4/C4C2 ⊆ Out S3xC6484(S3xC6).8(C2xC4)288,437
(S3xC6).9(C2xC4) = S3xC8:S3φ: C2xC4/C4C2 ⊆ Out S3xC6484(S3xC6).9(C2xC4)288,438
(S3xC6).10(C2xC4) = C24.63D6φ: C2xC4/C4C2 ⊆ Out S3xC6484(S3xC6).10(C2xC4)288,451
(S3xC6).11(C2xC4) = C4xS3xDic3φ: C2xC4/C4C2 ⊆ Out S3xC696(S3xC6).11(C2xC4)288,523
(S3xC6).12(C2xC4) = S3xDic3:C4φ: C2xC4/C4C2 ⊆ Out S3xC696(S3xC6).12(C2xC4)288,524
(S3xC6).13(C2xC4) = C3xC8oD12φ: C2xC4/C4C2 ⊆ Out S3xC6482(S3xC6).13(C2xC4)288,672
(S3xC6).14(C2xC4) = C3xD12.C4φ: C2xC4/C4C2 ⊆ Out S3xC6484(S3xC6).14(C2xC4)288,678
(S3xC6).15(C2xC4) = C2xS3xC3:C8φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6).15(C2xC4)288,460
(S3xC6).16(C2xC4) = S3xC4.Dic3φ: C2xC4/C22C2 ⊆ Out S3xC6484(S3xC6).16(C2xC4)288,461
(S3xC6).17(C2xC4) = C2xD6.Dic3φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6).17(C2xC4)288,467
(S3xC6).18(C2xC4) = C62.11C23φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6).18(C2xC4)288,489
(S3xC6).19(C2xC4) = C62.25C23φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6).19(C2xC4)288,503
(S3xC6).20(C2xC4) = S3xC4:Dic3φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6).20(C2xC4)288,537
(S3xC6).21(C2xC4) = C3xC42:2S3φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6).21(C2xC4)288,643
(S3xC6).22(C2xC4) = C3xC4:C4:7S3φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6).22(C2xC4)288,663
(S3xC6).23(C2xC4) = C6xC8:S3φ: C2xC4/C22C2 ⊆ Out S3xC696(S3xC6).23(C2xC4)288,671
(S3xC6).24(C2xC4) = C3xS3xM4(2)φ: C2xC4/C22C2 ⊆ Out S3xC6484(S3xC6).24(C2xC4)288,677
(S3xC6).25(C2xC4) = S3xC4xC12φ: trivial image96(S3xC6).25(C2xC4)288,642
(S3xC6).26(C2xC4) = C3xS3xC4:C4φ: trivial image96(S3xC6).26(C2xC4)288,662
(S3xC6).27(C2xC4) = S3xC2xC24φ: trivial image96(S3xC6).27(C2xC4)288,670

׿
x
:
Z
F
o
wr
Q
<