Extensions 1→N→G→Q→1 with N=S3×C6 and Q=C2×C4

Direct product G=N×Q with N=S3×C6 and Q=C2×C4
dρLabelID
S3×C22×C1296S3xC2^2xC12288,989

Semidirect products G=N:Q with N=S3×C6 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1(C2×C4) = C62.49C23φ: C2×C4/C2C22 ⊆ Out S3×C696(S3xC6):1(C2xC4)288,527
(S3×C6)⋊2(C2×C4) = Dic34D12φ: C2×C4/C2C22 ⊆ Out S3×C648(S3xC6):2(C2xC4)288,528
(S3×C6)⋊3(C2×C4) = C62.51C23φ: C2×C4/C2C22 ⊆ Out S3×C648(S3xC6):3(C2xC4)288,529
(S3×C6)⋊4(C2×C4) = Dic3×D12φ: C2×C4/C2C22 ⊆ Out S3×C696(S3xC6):4(C2xC4)288,540
(S3×C6)⋊5(C2×C4) = D12⋊Dic3φ: C2×C4/C2C22 ⊆ Out S3×C696(S3xC6):5(C2xC4)288,546
(S3×C6)⋊6(C2×C4) = C62.72C23φ: C2×C4/C2C22 ⊆ Out S3×C696(S3xC6):6(C2xC4)288,550
(S3×C6)⋊7(C2×C4) = S3×D6⋊C4φ: C2×C4/C2C22 ⊆ Out S3×C648(S3xC6):7(C2xC4)288,568
(S3×C6)⋊8(C2×C4) = C62.91C23φ: C2×C4/C2C22 ⊆ Out S3×C648(S3xC6):8(C2xC4)288,569
(S3×C6)⋊9(C2×C4) = Dic3×C3⋊D4φ: C2×C4/C2C22 ⊆ Out S3×C648(S3xC6):9(C2xC4)288,620
(S3×C6)⋊10(C2×C4) = C62.115C23φ: C2×C4/C2C22 ⊆ Out S3×C648(S3xC6):10(C2xC4)288,621
(S3×C6)⋊11(C2×C4) = C4×D6⋊S3φ: C2×C4/C4C2 ⊆ Out S3×C696(S3xC6):11(C2xC4)288,549
(S3×C6)⋊12(C2×C4) = C4×C3⋊D12φ: C2×C4/C4C2 ⊆ Out S3×C648(S3xC6):12(C2xC4)288,551
(S3×C6)⋊13(C2×C4) = C62.74C23φ: C2×C4/C4C2 ⊆ Out S3×C648(S3xC6):13(C2xC4)288,552
(S3×C6)⋊14(C2×C4) = C12×D12φ: C2×C4/C4C2 ⊆ Out S3×C696(S3xC6):14(C2xC4)288,644
(S3×C6)⋊15(C2×C4) = C3×Dic34D4φ: C2×C4/C4C2 ⊆ Out S3×C648(S3xC6):15(C2xC4)288,652
(S3×C6)⋊16(C2×C4) = C3×Dic35D4φ: C2×C4/C4C2 ⊆ Out S3×C696(S3xC6):16(C2xC4)288,664
(S3×C6)⋊17(C2×C4) = C12×C3⋊D4φ: C2×C4/C4C2 ⊆ Out S3×C648(S3xC6):17(C2xC4)288,699
(S3×C6)⋊18(C2×C4) = S32×C2×C4φ: C2×C4/C4C2 ⊆ Out S3×C648(S3xC6):18(C2xC4)288,950
(S3×C6)⋊19(C2×C4) = C2×D6⋊Dic3φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6):19(C2xC4)288,608
(S3×C6)⋊20(C2×C4) = S3×C6.D4φ: C2×C4/C22C2 ⊆ Out S3×C648(S3xC6):20(C2xC4)288,616
(S3×C6)⋊21(C2×C4) = C3×S3×C22⋊C4φ: C2×C4/C22C2 ⊆ Out S3×C648(S3xC6):21(C2xC4)288,651
(S3×C6)⋊22(C2×C4) = C6×D6⋊C4φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6):22(C2xC4)288,698
(S3×C6)⋊23(C2×C4) = C22×S3×Dic3φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6):23(C2xC4)288,969

Non-split extensions G=N.Q with N=S3×C6 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(S3×C6).1(C2×C4) = C24⋊D6φ: C2×C4/C2C22 ⊆ Out S3×C6484(S3xC6).1(C2xC4)288,439
(S3×C6).2(C2×C4) = C24.64D6φ: C2×C4/C2C22 ⊆ Out S3×C6484(S3xC6).2(C2xC4)288,452
(S3×C6).3(C2×C4) = C24.D6φ: C2×C4/C2C22 ⊆ Out S3×C6484(S3xC6).3(C2xC4)288,453
(S3×C6).4(C2×C4) = D12.2Dic3φ: C2×C4/C2C22 ⊆ Out S3×C6484(S3xC6).4(C2xC4)288,462
(S3×C6).5(C2×C4) = D12.Dic3φ: C2×C4/C2C22 ⊆ Out S3×C6484(S3xC6).5(C2xC4)288,463
(S3×C6).6(C2×C4) = C62.47C23φ: C2×C4/C2C22 ⊆ Out S3×C696(S3xC6).6(C2xC4)288,525
(S3×C6).7(C2×C4) = C62.48C23φ: C2×C4/C2C22 ⊆ Out S3×C696(S3xC6).7(C2xC4)288,526
(S3×C6).8(C2×C4) = S32×C8φ: C2×C4/C4C2 ⊆ Out S3×C6484(S3xC6).8(C2xC4)288,437
(S3×C6).9(C2×C4) = S3×C8⋊S3φ: C2×C4/C4C2 ⊆ Out S3×C6484(S3xC6).9(C2xC4)288,438
(S3×C6).10(C2×C4) = C24.63D6φ: C2×C4/C4C2 ⊆ Out S3×C6484(S3xC6).10(C2xC4)288,451
(S3×C6).11(C2×C4) = C4×S3×Dic3φ: C2×C4/C4C2 ⊆ Out S3×C696(S3xC6).11(C2xC4)288,523
(S3×C6).12(C2×C4) = S3×Dic3⋊C4φ: C2×C4/C4C2 ⊆ Out S3×C696(S3xC6).12(C2xC4)288,524
(S3×C6).13(C2×C4) = C3×C8○D12φ: C2×C4/C4C2 ⊆ Out S3×C6482(S3xC6).13(C2xC4)288,672
(S3×C6).14(C2×C4) = C3×D12.C4φ: C2×C4/C4C2 ⊆ Out S3×C6484(S3xC6).14(C2xC4)288,678
(S3×C6).15(C2×C4) = C2×S3×C3⋊C8φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6).15(C2xC4)288,460
(S3×C6).16(C2×C4) = S3×C4.Dic3φ: C2×C4/C22C2 ⊆ Out S3×C6484(S3xC6).16(C2xC4)288,461
(S3×C6).17(C2×C4) = C2×D6.Dic3φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6).17(C2xC4)288,467
(S3×C6).18(C2×C4) = C62.11C23φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6).18(C2xC4)288,489
(S3×C6).19(C2×C4) = C62.25C23φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6).19(C2xC4)288,503
(S3×C6).20(C2×C4) = S3×C4⋊Dic3φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6).20(C2xC4)288,537
(S3×C6).21(C2×C4) = C3×C422S3φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6).21(C2xC4)288,643
(S3×C6).22(C2×C4) = C3×C4⋊C47S3φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6).22(C2xC4)288,663
(S3×C6).23(C2×C4) = C6×C8⋊S3φ: C2×C4/C22C2 ⊆ Out S3×C696(S3xC6).23(C2xC4)288,671
(S3×C6).24(C2×C4) = C3×S3×M4(2)φ: C2×C4/C22C2 ⊆ Out S3×C6484(S3xC6).24(C2xC4)288,677
(S3×C6).25(C2×C4) = S3×C4×C12φ: trivial image96(S3xC6).25(C2xC4)288,642
(S3×C6).26(C2×C4) = C3×S3×C4⋊C4φ: trivial image96(S3xC6).26(C2xC4)288,662
(S3×C6).27(C2×C4) = S3×C2×C24φ: trivial image96(S3xC6).27(C2xC4)288,670

׿
×
𝔽