Extensions 1→N→G→Q→1 with N=C3 and Q=S3×M4(2)

Direct product G=N×Q with N=C3 and Q=S3×M4(2)
dρLabelID
C3×S3×M4(2)484C3xS3xM4(2)288,677

Semidirect products G=N:Q with N=C3 and Q=S3×M4(2)
extensionφ:Q→Aut NdρLabelID
C31(S3×M4(2)) = S3×C8⋊S3φ: S3×M4(2)/S3×C8C2 ⊆ Aut C3484C3:1(S3xM4(2))288,438
C32(S3×M4(2)) = C24⋊D6φ: S3×M4(2)/C8⋊S3C2 ⊆ Aut C3484C3:2(S3xM4(2))288,439
C33(S3×M4(2)) = C3⋊C820D6φ: S3×M4(2)/C4.Dic3C2 ⊆ Aut C3244C3:3(S3xM4(2))288,466
C34(S3×M4(2)) = M4(2)×C3⋊S3φ: S3×M4(2)/C3×M4(2)C2 ⊆ Aut C372C3:4(S3xM4(2))288,763
C35(S3×M4(2)) = S3×C4.Dic3φ: S3×M4(2)/S3×C2×C4C2 ⊆ Aut C3484C3:5(S3xM4(2))288,461

Non-split extensions G=N.Q with N=C3 and Q=S3×M4(2)
extensionφ:Q→Aut NdρLabelID
C3.(S3×M4(2)) = M4(2)×D9φ: S3×M4(2)/C3×M4(2)C2 ⊆ Aut C3724C3.(S3xM4(2))288,116

׿
×
𝔽