direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: M4(2)×D9, C8⋊6D18, C72⋊6C22, C24.44D6, C36.38C23, (C8×D9)⋊7C2, C8⋊D9⋊5C2, C9⋊C8⋊11C22, (C4×D9).1C4, C4.15(C4×D9), C9⋊2(C2×M4(2)), C3.(S3×M4(2)), C12.11(C4×S3), C36.12(C2×C4), D18.6(C2×C4), (C2×C12).51D6, (C2×C4).46D18, C4.Dic9⋊5C2, C22.7(C4×D9), (C9×M4(2))⋊3C2, (C2×Dic9).6C4, Dic9.8(C2×C4), (C22×D9).4C4, C4.38(C22×D9), C18.15(C22×C4), (C2×C36).29C22, (C4×D9).18C22, (C3×M4(2)).3S3, C12.199(C22×S3), C6.54(S3×C2×C4), (C2×C4×D9).3C2, C2.16(C2×C4×D9), (C2×C6).8(C4×S3), (C2×C18).5(C2×C4), SmallGroup(288,116)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for M4(2)×D9
G = < a,b,c,d | a8=b2=c9=d2=1, bab=a5, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 384 in 102 conjugacy classes, 48 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, C23, C9, Dic3, C12, D6, C2×C6, C2×C8, M4(2), M4(2), C22×C4, D9, D9, C18, C18, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×M4(2), Dic9, C36, D18, D18, C2×C18, S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), S3×C2×C4, C9⋊C8, C72, C4×D9, C2×Dic9, C2×C36, C22×D9, S3×M4(2), C8×D9, C8⋊D9, C4.Dic9, C9×M4(2), C2×C4×D9, M4(2)×D9
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, M4(2), C22×C4, D9, C4×S3, C22×S3, C2×M4(2), D18, S3×C2×C4, C4×D9, C22×D9, S3×M4(2), C2×C4×D9, M4(2)×D9
(1 59 23 50 14 68 32 41)(2 60 24 51 15 69 33 42)(3 61 25 52 16 70 34 43)(4 62 26 53 17 71 35 44)(5 63 27 54 18 72 36 45)(6 55 19 46 10 64 28 37)(7 56 20 47 11 65 29 38)(8 57 21 48 12 66 30 39)(9 58 22 49 13 67 31 40)
(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 13)(2 12)(3 11)(4 10)(5 18)(6 17)(7 16)(8 15)(9 14)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)(37 53)(38 52)(39 51)(40 50)(41 49)(42 48)(43 47)(44 46)(45 54)(55 71)(56 70)(57 69)(58 68)(59 67)(60 66)(61 65)(62 64)(63 72)
G:=sub<Sym(72)| (1,59,23,50,14,68,32,41)(2,60,24,51,15,69,33,42)(3,61,25,52,16,70,34,43)(4,62,26,53,17,71,35,44)(5,63,27,54,18,72,36,45)(6,55,19,46,10,64,28,37)(7,56,20,47,11,65,29,38)(8,57,21,48,12,66,30,39)(9,58,22,49,13,67,31,40), (37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72)>;
G:=Group( (1,59,23,50,14,68,32,41)(2,60,24,51,15,69,33,42)(3,61,25,52,16,70,34,43)(4,62,26,53,17,71,35,44)(5,63,27,54,18,72,36,45)(6,55,19,46,10,64,28,37)(7,56,20,47,11,65,29,38)(8,57,21,48,12,66,30,39)(9,58,22,49,13,67,31,40), (37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72) );
G=PermutationGroup([[(1,59,23,50,14,68,32,41),(2,60,24,51,15,69,33,42),(3,61,25,52,16,70,34,43),(4,62,26,53,17,71,35,44),(5,63,27,54,18,72,36,45),(6,55,19,46,10,64,28,37),(7,56,20,47,11,65,29,38),(8,57,21,48,12,66,30,39),(9,58,22,49,13,67,31,40)], [(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,13),(2,12),(3,11),(4,10),(5,18),(6,17),(7,16),(8,15),(9,14),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36),(37,53),(38,52),(39,51),(40,50),(41,49),(42,48),(43,47),(44,46),(45,54),(55,71),(56,70),(57,69),(58,68),(59,67),(60,66),(61,65),(62,64),(63,72)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 9A | 9B | 9C | 12A | 12B | 12C | 18A | 18B | 18C | 18D | 18E | 18F | 24A | 24B | 24C | 24D | 36A | ··· | 36F | 36G | 36H | 36I | 72A | ··· | 72L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 36 | ··· | 36 | 36 | 36 | 36 | 72 | ··· | 72 |
size | 1 | 1 | 2 | 9 | 9 | 18 | 2 | 1 | 1 | 2 | 9 | 9 | 18 | 2 | 4 | 2 | 2 | 2 | 2 | 18 | 18 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | ··· | 4 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D6 | D6 | M4(2) | D9 | C4×S3 | C4×S3 | D18 | D18 | C4×D9 | C4×D9 | S3×M4(2) | M4(2)×D9 |
kernel | M4(2)×D9 | C8×D9 | C8⋊D9 | C4.Dic9 | C9×M4(2) | C2×C4×D9 | C4×D9 | C2×Dic9 | C22×D9 | C3×M4(2) | C24 | C2×C12 | D9 | M4(2) | C12 | C2×C6 | C8 | C2×C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 2 | 2 | 1 | 2 | 1 | 4 | 3 | 2 | 2 | 6 | 3 | 6 | 6 | 2 | 6 |
Matrix representation of M4(2)×D9 ►in GL4(𝔽73) generated by
46 | 0 | 0 | 0 |
0 | 46 | 0 | 0 |
0 | 0 | 1 | 3 |
0 | 0 | 15 | 72 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 48 | 72 |
70 | 45 | 0 | 0 |
28 | 42 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
3 | 42 | 0 | 0 |
45 | 70 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
G:=sub<GL(4,GF(73))| [46,0,0,0,0,46,0,0,0,0,1,15,0,0,3,72],[1,0,0,0,0,1,0,0,0,0,1,48,0,0,0,72],[70,28,0,0,45,42,0,0,0,0,1,0,0,0,0,1],[3,45,0,0,42,70,0,0,0,0,72,0,0,0,0,72] >;
M4(2)×D9 in GAP, Magma, Sage, TeX
M_4(2)\times D_9
% in TeX
G:=Group("M4(2)xD9");
// GroupNames label
G:=SmallGroup(288,116);
// by ID
G=gap.SmallGroup(288,116);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,219,58,80,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^9=d^2=1,b*a*b=a^5,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations