extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C2xA4) = A4xDic6 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 72 | 6- | C12.1(C2xA4) | 288,918 |
C12.2(C2xA4) = Dic6.A4 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 72 | 4+ | C12.2(C2xA4) | 288,924 |
C12.3(C2xA4) = D12.A4 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 48 | 4- | C12.3(C2xA4) | 288,926 |
C12.4(C2xA4) = A4xC3:C8 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 72 | 6 | C12.4(C2xA4) | 288,408 |
C12.5(C2xA4) = SL2(F3).Dic3 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 96 | 4 | C12.5(C2xA4) | 288,410 |
C12.6(C2xA4) = S3xC4.A4 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 48 | 4 | C12.6(C2xA4) | 288,925 |
C12.7(C2xA4) = D4xC3.A4 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 36 | 6 | C12.7(C2xA4) | 288,344 |
C12.8(C2xA4) = Q8xC3.A4 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 72 | 6 | C12.8(C2xA4) | 288,346 |
C12.9(C2xA4) = 2+ 1+4:C9 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 72 | 4 | C12.9(C2xA4) | 288,348 |
C12.10(C2xA4) = 2- 1+4:C9 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 144 | 4 | C12.10(C2xA4) | 288,349 |
C12.11(C2xA4) = C3xQ8xA4 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 72 | 6 | C12.11(C2xA4) | 288,982 |
C12.12(C2xA4) = C3xQ8.A4 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 72 | 4 | C12.12(C2xA4) | 288,984 |
C12.13(C2xA4) = C3xD4.A4 | φ: C2xA4/A4 → C2 ⊆ Aut C12 | 48 | 4 | C12.13(C2xA4) | 288,985 |
C12.14(C2xA4) = C8xC3.A4 | central extension (φ=1) | 72 | 3 | C12.14(C2xA4) | 288,76 |
C12.15(C2xA4) = Q8.C36 | central extension (φ=1) | 144 | 2 | C12.15(C2xA4) | 288,77 |
C12.16(C2xA4) = C2xC4xC3.A4 | central extension (φ=1) | 72 | | C12.16(C2xA4) | 288,343 |
C12.17(C2xA4) = C2xQ8.C18 | central extension (φ=1) | 144 | | C12.17(C2xA4) | 288,347 |
C12.18(C2xA4) = A4xC24 | central extension (φ=1) | 72 | 3 | C12.18(C2xA4) | 288,637 |
C12.19(C2xA4) = C3xC8.A4 | central extension (φ=1) | 96 | 2 | C12.19(C2xA4) | 288,638 |
C12.20(C2xA4) = C6xC4.A4 | central extension (φ=1) | 96 | | C12.20(C2xA4) | 288,983 |