Extensions 1→N→G→Q→1 with N=C12 and Q=C2xA4

Direct product G=NxQ with N=C12 and Q=C2xA4
dρLabelID
A4xC2xC1272A4xC2xC12288,979

Semidirect products G=N:Q with N=C12 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
C12:1(C2xA4) = A4xD12φ: C2xA4/A4C2 ⊆ Aut C12366+C12:1(C2xA4)288,920
C12:2(C2xA4) = C4xS3xA4φ: C2xA4/A4C2 ⊆ Aut C12366C12:2(C2xA4)288,919
C12:3(C2xA4) = C3xD4xA4φ: C2xA4/A4C2 ⊆ Aut C12366C12:3(C2xA4)288,980

Non-split extensions G=N.Q with N=C12 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
C12.1(C2xA4) = A4xDic6φ: C2xA4/A4C2 ⊆ Aut C12726-C12.1(C2xA4)288,918
C12.2(C2xA4) = Dic6.A4φ: C2xA4/A4C2 ⊆ Aut C12724+C12.2(C2xA4)288,924
C12.3(C2xA4) = D12.A4φ: C2xA4/A4C2 ⊆ Aut C12484-C12.3(C2xA4)288,926
C12.4(C2xA4) = A4xC3:C8φ: C2xA4/A4C2 ⊆ Aut C12726C12.4(C2xA4)288,408
C12.5(C2xA4) = SL2(F3).Dic3φ: C2xA4/A4C2 ⊆ Aut C12964C12.5(C2xA4)288,410
C12.6(C2xA4) = S3xC4.A4φ: C2xA4/A4C2 ⊆ Aut C12484C12.6(C2xA4)288,925
C12.7(C2xA4) = D4xC3.A4φ: C2xA4/A4C2 ⊆ Aut C12366C12.7(C2xA4)288,344
C12.8(C2xA4) = Q8xC3.A4φ: C2xA4/A4C2 ⊆ Aut C12726C12.8(C2xA4)288,346
C12.9(C2xA4) = 2+ 1+4:C9φ: C2xA4/A4C2 ⊆ Aut C12724C12.9(C2xA4)288,348
C12.10(C2xA4) = 2- 1+4:C9φ: C2xA4/A4C2 ⊆ Aut C121444C12.10(C2xA4)288,349
C12.11(C2xA4) = C3xQ8xA4φ: C2xA4/A4C2 ⊆ Aut C12726C12.11(C2xA4)288,982
C12.12(C2xA4) = C3xQ8.A4φ: C2xA4/A4C2 ⊆ Aut C12724C12.12(C2xA4)288,984
C12.13(C2xA4) = C3xD4.A4φ: C2xA4/A4C2 ⊆ Aut C12484C12.13(C2xA4)288,985
C12.14(C2xA4) = C8xC3.A4central extension (φ=1)723C12.14(C2xA4)288,76
C12.15(C2xA4) = Q8.C36central extension (φ=1)1442C12.15(C2xA4)288,77
C12.16(C2xA4) = C2xC4xC3.A4central extension (φ=1)72C12.16(C2xA4)288,343
C12.17(C2xA4) = C2xQ8.C18central extension (φ=1)144C12.17(C2xA4)288,347
C12.18(C2xA4) = A4xC24central extension (φ=1)723C12.18(C2xA4)288,637
C12.19(C2xA4) = C3xC8.A4central extension (φ=1)962C12.19(C2xA4)288,638
C12.20(C2xA4) = C6xC4.A4central extension (φ=1)96C12.20(C2xA4)288,983

׿
x
:
Z
F
o
wr
Q
<