Copied to
clipboard

G = A4xDic6order 288 = 25·32

Direct product of A4 and Dic6

direct product, metabelian, soluble, monomial

Aliases: A4xDic6, C3:(Q8xA4), C4.1(S3xA4), (C3xA4):4Q8, (C4xA4).3S3, C12.1(C2xA4), (C12xA4).3C2, (C2xA4).13D6, C6.1(C22xA4), (C22xDic6):C3, C23.16(S3xC6), (C22xC12).1C6, Dic3.1(C2xA4), (Dic3xA4).2C2, C22:2(C3xDic6), (C22xDic3).C6, (C6xA4).18C22, (C2xC6):(C3xQ8), C2.3(C2xS3xA4), (C22xC4).3(C3xS3), (C22xC6).1(C2xC6), SmallGroup(288,918)

Series: Derived Chief Lower central Upper central

C1C22xC6 — A4xDic6
C1C3C2xC6C22xC6C6xA4Dic3xA4 — A4xDic6
C2xC6C22xC6 — A4xDic6
C1C2C4

Generators and relations for A4xDic6
 G = < a,b,c,d,e | a2=b2=c3=d12=1, e2=d6, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 378 in 98 conjugacy classes, 27 normal (21 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, C6, C6, C2xC4, Q8, C23, C32, Dic3, Dic3, C12, C12, A4, A4, C2xC6, C2xC6, C22xC4, C22xC4, C2xQ8, C3xC6, Dic6, Dic6, C2xDic3, C2xC12, C3xQ8, C2xA4, C2xA4, C22xC6, C22xQ8, C3xDic3, C3xC12, C3xA4, C4xA4, C4xA4, C2xDic6, C22xDic3, C22xC12, C3xDic6, C6xA4, Q8xA4, C22xDic6, Dic3xA4, C12xA4, A4xDic6
Quotients: C1, C2, C3, C22, S3, C6, Q8, A4, D6, C2xC6, C3xS3, Dic6, C3xQ8, C2xA4, S3xC6, C22xA4, C3xDic6, S3xA4, Q8xA4, C2xS3xA4, A4xDic6

Smallest permutation representation of A4xDic6
On 72 points
Generators in S72
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)(61 67)(62 68)(63 69)(64 70)(65 71)(66 72)
(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)(61 67)(62 68)(63 69)(64 70)(65 71)(66 72)
(1 63 19)(2 64 20)(3 65 21)(4 66 22)(5 67 23)(6 68 24)(7 69 13)(8 70 14)(9 71 15)(10 72 16)(11 61 17)(12 62 18)(25 55 39)(26 56 40)(27 57 41)(28 58 42)(29 59 43)(30 60 44)(31 49 45)(32 50 46)(33 51 47)(34 52 48)(35 53 37)(36 54 38)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 39 7 45)(2 38 8 44)(3 37 9 43)(4 48 10 42)(5 47 11 41)(6 46 12 40)(13 49 19 55)(14 60 20 54)(15 59 21 53)(16 58 22 52)(17 57 23 51)(18 56 24 50)(25 69 31 63)(26 68 32 62)(27 67 33 61)(28 66 34 72)(29 65 35 71)(30 64 36 70)

G:=sub<Sym(72)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72), (1,63,19)(2,64,20)(3,65,21)(4,66,22)(5,67,23)(6,68,24)(7,69,13)(8,70,14)(9,71,15)(10,72,16)(11,61,17)(12,62,18)(25,55,39)(26,56,40)(27,57,41)(28,58,42)(29,59,43)(30,60,44)(31,49,45)(32,50,46)(33,51,47)(34,52,48)(35,53,37)(36,54,38), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,39,7,45)(2,38,8,44)(3,37,9,43)(4,48,10,42)(5,47,11,41)(6,46,12,40)(13,49,19,55)(14,60,20,54)(15,59,21,53)(16,58,22,52)(17,57,23,51)(18,56,24,50)(25,69,31,63)(26,68,32,62)(27,67,33,61)(28,66,34,72)(29,65,35,71)(30,64,36,70)>;

G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72), (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72), (1,63,19)(2,64,20)(3,65,21)(4,66,22)(5,67,23)(6,68,24)(7,69,13)(8,70,14)(9,71,15)(10,72,16)(11,61,17)(12,62,18)(25,55,39)(26,56,40)(27,57,41)(28,58,42)(29,59,43)(30,60,44)(31,49,45)(32,50,46)(33,51,47)(34,52,48)(35,53,37)(36,54,38), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,39,7,45)(2,38,8,44)(3,37,9,43)(4,48,10,42)(5,47,11,41)(6,46,12,40)(13,49,19,55)(14,60,20,54)(15,59,21,53)(16,58,22,52)(17,57,23,51)(18,56,24,50)(25,69,31,63)(26,68,32,62)(27,67,33,61)(28,66,34,72)(29,65,35,71)(30,64,36,70) );

G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48),(61,67),(62,68),(63,69),(64,70),(65,71),(66,72)], [(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(49,55),(50,56),(51,57),(52,58),(53,59),(54,60),(61,67),(62,68),(63,69),(64,70),(65,71),(66,72)], [(1,63,19),(2,64,20),(3,65,21),(4,66,22),(5,67,23),(6,68,24),(7,69,13),(8,70,14),(9,71,15),(10,72,16),(11,61,17),(12,62,18),(25,55,39),(26,56,40),(27,57,41),(28,58,42),(29,59,43),(30,60,44),(31,49,45),(32,50,46),(33,51,47),(34,52,48),(35,53,37),(36,54,38)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,39,7,45),(2,38,8,44),(3,37,9,43),(4,48,10,42),(5,47,11,41),(6,46,12,40),(13,49,19,55),(14,60,20,54),(15,59,21,53),(16,58,22,52),(17,57,23,51),(18,56,24,50),(25,69,31,63),(26,68,32,62),(27,67,33,61),(28,66,34,72),(29,65,35,71),(30,64,36,70)]])

36 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D4E4F6A6B6C6D6E6F6G12A12B12C12D12E···12J12K12L12M12N
order12223333344444466666661212121212···1212121212
size11332448826661818244668822668···824242424

36 irreducible representations

dim111111222222223336666
type++++-+-++++-+-
imageC1C2C2C3C6C6S3Q8D6C3xS3Dic6C3xQ8S3xC6C3xDic6A4C2xA4C2xA4S3xA4Q8xA4C2xS3xA4A4xDic6
kernelA4xDic6Dic3xA4C12xA4C22xDic6C22xDic3C22xC12C4xA4C3xA4C2xA4C22xC4A4C2xC6C23C22Dic6Dic3C12C4C3C2C1
# reps121242111222241211112

Matrix representation of A4xDic6 in GL5(F13)

10000
01000
00001
00121212
00100
,
10000
01000
00010
00100
00121212
,
10000
01000
00300
00003
00101010
,
60000
011000
00100
00010
00001
,
012000
10000
001200
000120
000012

G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,12,0,0,0,1,12,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,1,0,12,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,3,0,10,0,0,0,0,10,0,0,0,3,10],[6,0,0,0,0,0,11,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12] >;

A4xDic6 in GAP, Magma, Sage, TeX

A_4\times {\rm Dic}_6
% in TeX

G:=Group("A4xDic6");
// GroupNames label

G:=SmallGroup(288,918);
// by ID

G=gap.SmallGroup(288,918);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-3,84,197,92,648,271,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^12=1,e^2=d^6,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<