extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(C3×D4) = C3×C23.6D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).1(C3xD4) | 288,240 |
(C2×C6).2(C3×D4) = C3×D12⋊C4 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).2(C3xD4) | 288,259 |
(C2×C6).3(C3×D4) = C3×C23.7D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).3(C3xD4) | 288,268 |
(C2×C6).4(C3×D4) = C3×Q8⋊3Dic3 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).4(C3xD4) | 288,271 |
(C2×C6).5(C3×D4) = C3×C23.21D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).5(C3xD4) | 288,657 |
(C2×C6).6(C3×D4) = C3×C8⋊D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).6(C3xD4) | 288,679 |
(C2×C6).7(C3×D4) = C3×C8.D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).7(C3xD4) | 288,680 |
(C2×C6).8(C3×D4) = C3×C23.23D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).8(C3xD4) | 288,706 |
(C2×C6).9(C3×D4) = C3×D4⋊D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).9(C3xD4) | 288,720 |
(C2×C6).10(C3×D4) = C3×Q8.13D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).10(C3xD4) | 288,721 |
(C2×C6).11(C3×D4) = C3×Q8.14D6 | φ: C3×D4/C6 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).11(C3xD4) | 288,722 |
(C2×C6).12(C3×D4) = D4×C3.A4 | φ: C3×D4/D4 → C3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).12(C3xD4) | 288,344 |
(C2×C6).13(C3×D4) = C9×C4⋊D4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).13(C3xD4) | 288,171 |
(C2×C6).14(C3×D4) = C9×C4○D8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 144 | 2 | (C2xC6).14(C3xD4) | 288,185 |
(C2×C6).15(C3×D4) = C32×C4○D8 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).15(C3xD4) | 288,832 |
(C2×C6).16(C3×D4) = C3×C2.Dic12 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).16(C3xD4) | 288,250 |
(C2×C6).17(C3×D4) = C3×C8⋊Dic3 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).17(C3xD4) | 288,251 |
(C2×C6).18(C3×D4) = C3×C24⋊1C4 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).18(C3xD4) | 288,252 |
(C2×C6).19(C3×D4) = C3×C2.D24 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).19(C3xD4) | 288,255 |
(C2×C6).20(C3×D4) = C6×C24⋊C2 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).20(C3xD4) | 288,673 |
(C2×C6).21(C3×D4) = C6×D24 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).21(C3xD4) | 288,674 |
(C2×C6).22(C3×D4) = C3×C4○D24 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 48 | 2 | (C2xC6).22(C3xD4) | 288,675 |
(C2×C6).23(C3×D4) = C6×Dic12 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).23(C3xD4) | 288,676 |
(C2×C6).24(C3×D4) = C6×C4⋊Dic3 | φ: C3×D4/C12 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).24(C3xD4) | 288,696 |
(C2×C6).25(C3×D4) = C9×C23⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).25(C3xD4) | 288,49 |
(C2×C6).26(C3×D4) = C9×C4≀C2 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).26(C3xD4) | 288,54 |
(C2×C6).27(C3×D4) = C9×C22≀C2 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).27(C3xD4) | 288,170 |
(C2×C6).28(C3×D4) = C9×C22.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).28(C3xD4) | 288,173 |
(C2×C6).29(C3×D4) = C9×C8⋊C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).29(C3xD4) | 288,186 |
(C2×C6).30(C3×D4) = C9×C8.C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | 4 | (C2xC6).30(C3xD4) | 288,187 |
(C2×C6).31(C3×D4) = C32×C23⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).31(C3xD4) | 288,317 |
(C2×C6).32(C3×D4) = C32×C4≀C2 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).32(C3xD4) | 288,322 |
(C2×C6).33(C3×D4) = C32×C22.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).33(C3xD4) | 288,820 |
(C2×C6).34(C3×D4) = C32×C8⋊C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).34(C3xD4) | 288,833 |
(C2×C6).35(C3×D4) = C32×C8.C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).35(C3xD4) | 288,834 |
(C2×C6).36(C3×D4) = C3×C42⋊4S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 24 | 2 | (C2xC6).36(C3xD4) | 288,239 |
(C2×C6).37(C3×D4) = C3×C6.Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).37(C3xD4) | 288,241 |
(C2×C6).38(C3×D4) = C3×C12.Q8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).38(C3xD4) | 288,242 |
(C2×C6).39(C3×D4) = C3×C6.D8 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).39(C3xD4) | 288,243 |
(C2×C6).40(C3×D4) = C3×C6.SD16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).40(C3xD4) | 288,244 |
(C2×C6).41(C3×D4) = C3×C6.C42 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).41(C3xD4) | 288,265 |
(C2×C6).42(C3×D4) = C3×D4⋊Dic3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).42(C3xD4) | 288,266 |
(C2×C6).43(C3×D4) = C3×Q8⋊2Dic3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).43(C3xD4) | 288,269 |
(C2×C6).44(C3×D4) = C6×Dic3⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).44(C3xD4) | 288,694 |
(C2×C6).45(C3×D4) = C6×D6⋊C4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).45(C3xD4) | 288,698 |
(C2×C6).46(C3×D4) = C3×C23.28D6 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).46(C3xD4) | 288,700 |
(C2×C6).47(C3×D4) = C6×D4⋊S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).47(C3xD4) | 288,702 |
(C2×C6).48(C3×D4) = C3×D12⋊6C22 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).48(C3xD4) | 288,703 |
(C2×C6).49(C3×D4) = C6×D4.S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).49(C3xD4) | 288,704 |
(C2×C6).50(C3×D4) = C6×Q8⋊2S3 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).50(C3xD4) | 288,712 |
(C2×C6).51(C3×D4) = C3×Q8.11D6 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).51(C3xD4) | 288,713 |
(C2×C6).52(C3×D4) = C6×C3⋊Q16 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).52(C3xD4) | 288,714 |
(C2×C6).53(C3×D4) = C6×C6.D4 | φ: C3×D4/C2×C6 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).53(C3xD4) | 288,723 |
(C2×C6).54(C3×D4) = C9×C2.C42 | central extension (φ=1) | 288 | | (C2xC6).54(C3xD4) | 288,45 |
(C2×C6).55(C3×D4) = C9×D4⋊C4 | central extension (φ=1) | 144 | | (C2xC6).55(C3xD4) | 288,52 |
(C2×C6).56(C3×D4) = C9×Q8⋊C4 | central extension (φ=1) | 288 | | (C2xC6).56(C3xD4) | 288,53 |
(C2×C6).57(C3×D4) = C9×C4.Q8 | central extension (φ=1) | 288 | | (C2xC6).57(C3xD4) | 288,56 |
(C2×C6).58(C3×D4) = C9×C2.D8 | central extension (φ=1) | 288 | | (C2xC6).58(C3xD4) | 288,57 |
(C2×C6).59(C3×D4) = C22⋊C4×C18 | central extension (φ=1) | 144 | | (C2xC6).59(C3xD4) | 288,165 |
(C2×C6).60(C3×D4) = C4⋊C4×C18 | central extension (φ=1) | 288 | | (C2xC6).60(C3xD4) | 288,166 |
(C2×C6).61(C3×D4) = D8×C18 | central extension (φ=1) | 144 | | (C2xC6).61(C3xD4) | 288,182 |
(C2×C6).62(C3×D4) = SD16×C18 | central extension (φ=1) | 144 | | (C2xC6).62(C3xD4) | 288,183 |
(C2×C6).63(C3×D4) = Q16×C18 | central extension (φ=1) | 288 | | (C2xC6).63(C3xD4) | 288,184 |
(C2×C6).64(C3×D4) = C32×C2.C42 | central extension (φ=1) | 288 | | (C2xC6).64(C3xD4) | 288,313 |
(C2×C6).65(C3×D4) = C32×D4⋊C4 | central extension (φ=1) | 144 | | (C2xC6).65(C3xD4) | 288,320 |
(C2×C6).66(C3×D4) = C32×Q8⋊C4 | central extension (φ=1) | 288 | | (C2xC6).66(C3xD4) | 288,321 |
(C2×C6).67(C3×D4) = C32×C4.Q8 | central extension (φ=1) | 288 | | (C2xC6).67(C3xD4) | 288,324 |
(C2×C6).68(C3×D4) = C32×C2.D8 | central extension (φ=1) | 288 | | (C2xC6).68(C3xD4) | 288,325 |
(C2×C6).69(C3×D4) = D4×C2×C18 | central extension (φ=1) | 144 | | (C2xC6).69(C3xD4) | 288,368 |
(C2×C6).70(C3×D4) = C22⋊C4×C3×C6 | central extension (φ=1) | 144 | | (C2xC6).70(C3xD4) | 288,812 |
(C2×C6).71(C3×D4) = C4⋊C4×C3×C6 | central extension (φ=1) | 288 | | (C2xC6).71(C3xD4) | 288,813 |
(C2×C6).72(C3×D4) = D8×C3×C6 | central extension (φ=1) | 144 | | (C2xC6).72(C3xD4) | 288,829 |
(C2×C6).73(C3×D4) = SD16×C3×C6 | central extension (φ=1) | 144 | | (C2xC6).73(C3xD4) | 288,830 |
(C2×C6).74(C3×D4) = Q16×C3×C6 | central extension (φ=1) | 288 | | (C2xC6).74(C3xD4) | 288,831 |