Copied to
clipboard

G = C3xC8.D6order 288 = 25·32

Direct product of C3 and C8.D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xC8.D6, C24.41D6, Dic12:2C6, C12.90D12, C62.64D4, C8.1(S3xC6), C24:C2:2C6, C24.1(C2xC6), C6.14(C6xD4), (C2xDic6):8C6, C4oD12.4C6, D12.8(C2xC6), (C3xC12).83D4, C12.13(C3xD4), (C2xC6).48D12, C4.15(C3xD12), C2.16(C6xD12), (C3xDic12):3C2, (C6xDic6):13C2, C6.102(C2xD12), (C2xC12).239D6, (C3xM4(2)):4S3, M4(2):2(C3xS3), (C3xM4(2)):2C6, (C3xC24).3C22, Dic6.8(C2xC6), C22.6(C3xD12), C12.33(C22xC6), C12.220(C22xS3), (C6xC12).116C22, (C3xC12).165C23, (C3xD12).47C22, C32:16(C8.C22), (C32xM4(2)):2C2, (C3xDic6).48C22, C4.31(S3xC2xC6), (C2xC6).7(C3xD4), (C3xC24:C2):4C2, (C2xC4).14(S3xC6), C3:1(C3xC8.C22), (C2xC12).27(C2xC6), (C3xC6).184(C2xD4), (C3xC4oD12).10C2, SmallGroup(288,680)

Series: Derived Chief Lower central Upper central

C1C12 — C3xC8.D6
C1C3C6C12C3xC12C3xD12C3xC4oD12 — C3xC8.D6
C3C6C12 — C3xC8.D6
C1C6C2xC12C3xM4(2)

Generators and relations for C3xC8.D6
 G = < a,b,c,d | a3=b8=1, c6=d2=b4, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd-1=b-1, dcd-1=c5 >

Subgroups: 314 in 130 conjugacy classes, 58 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, M4(2), SD16, Q16, C2xQ8, C4oD4, C3xS3, C3xC6, C3xC6, C24, C24, Dic6, Dic6, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C8.C22, C3xDic3, C3xC12, S3xC6, C62, C24:C2, Dic12, C3xM4(2), C3xM4(2), C3xSD16, C3xQ16, C2xDic6, C4oD12, C6xQ8, C3xC4oD4, C3xC24, C3xDic6, C3xDic6, C3xDic6, S3xC12, C3xD12, C6xDic3, C3xC3:D4, C6xC12, C8.D6, C3xC8.C22, C3xC24:C2, C3xDic12, C32xM4(2), C6xDic6, C3xC4oD12, C3xC8.D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C3xS3, D12, C3xD4, C22xS3, C22xC6, C8.C22, S3xC6, C2xD12, C6xD4, C3xD12, S3xC2xC6, C8.D6, C3xC8.C22, C6xD12, C3xC8.D6

Smallest permutation representation of C3xC8.D6
On 48 points
Generators in S48
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 13 4 22 7 19 10 16)(2 20 5 17 8 14 11 23)(3 15 6 24 9 21 12 18)(25 37 34 40 31 43 28 46)(26 44 35 47 32 38 29 41)(27 39 36 42 33 45 30 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 7 27)(2 26 8 32)(3 31 9 25)(4 36 10 30)(5 29 11 35)(6 34 12 28)(13 42 19 48)(14 47 20 41)(15 40 21 46)(16 45 22 39)(17 38 23 44)(18 43 24 37)

G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,13,4,22,7,19,10,16)(2,20,5,17,8,14,11,23)(3,15,6,24,9,21,12,18)(25,37,34,40,31,43,28,46)(26,44,35,47,32,38,29,41)(27,39,36,42,33,45,30,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,26,8,32)(3,31,9,25)(4,36,10,30)(5,29,11,35)(6,34,12,28)(13,42,19,48)(14,47,20,41)(15,40,21,46)(16,45,22,39)(17,38,23,44)(18,43,24,37)>;

G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,13,4,22,7,19,10,16)(2,20,5,17,8,14,11,23)(3,15,6,24,9,21,12,18)(25,37,34,40,31,43,28,46)(26,44,35,47,32,38,29,41)(27,39,36,42,33,45,30,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,33,7,27)(2,26,8,32)(3,31,9,25)(4,36,10,30)(5,29,11,35)(6,34,12,28)(13,42,19,48)(14,47,20,41)(15,40,21,46)(16,45,22,39)(17,38,23,44)(18,43,24,37) );

G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,13,4,22,7,19,10,16),(2,20,5,17,8,14,11,23),(3,15,6,24,9,21,12,18),(25,37,34,40,31,43,28,46),(26,44,35,47,32,38,29,41),(27,39,36,42,33,45,30,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,7,27),(2,26,8,32),(3,31,9,25),(4,36,10,30),(5,29,11,35),(6,34,12,28),(13,42,19,48),(14,47,20,41),(15,40,21,46),(16,45,22,39),(17,38,23,44),(18,43,24,37)]])

63 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D4E6A6B6C···6G6H6I6J6K6L8A8B12A···12J12K12L12M12N···12S24A···24P
order12223333344444666···6666668812···1212121212···1224···24
size112121122222121212112···24441212442···244412···124···4

63 irreducible representations

dim111111111111222222222222224444
type+++++++++++++--
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D4D4D6D6C3xS3D12C3xD4D12C3xD4S3xC6S3xC6C3xD12C3xD12C8.C22C8.D6C3xC8.C22C3xC8.D6
kernelC3xC8.D6C3xC24:C2C3xDic12C32xM4(2)C6xDic6C3xC4oD12C8.D6C24:C2Dic12C3xM4(2)C2xDic6C4oD12C3xM4(2)C3xC12C62C24C2xC12M4(2)C12C12C2xC6C2xC6C8C2xC4C4C22C32C3C3C1
# reps122111244222111212222242441224

Matrix representation of C3xC8.D6 in GL4(F73) generated by

64000
06400
00640
00064
,
0100
46000
028046
2669720
,
70000
0300
5619490
5456024
,
1029510
4410022
46336329
33274463
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[0,46,0,26,1,0,28,69,0,0,0,72,0,0,46,0],[70,0,56,54,0,3,19,56,0,0,49,0,0,0,0,24],[10,44,46,33,29,10,33,27,51,0,63,44,0,22,29,63] >;

C3xC8.D6 in GAP, Magma, Sage, TeX

C_3\times C_8.D_6
% in TeX

G:=Group("C3xC8.D6");
// GroupNames label

G:=SmallGroup(288,680);
// by ID

G=gap.SmallGroup(288,680);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,344,590,555,142,2524,102,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=1,c^6=d^2=b^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<