Extensions 1→N→G→Q→1 with N=C4 and Q=C3.S4

Direct product G=N×Q with N=C4 and Q=C3.S4
dρLabelID
C4×C3.S4366C4xC3.S4288,333

Semidirect products G=N:Q with N=C4 and Q=C3.S4
extensionφ:Q→Aut NdρLabelID
C4⋊(C3.S4) = C22⋊D36φ: C3.S4/C3.A4C2 ⊆ Aut C4366+C4:(C3.S4)288,334

Non-split extensions G=N.Q with N=C4 and Q=C3.S4
extensionφ:Q→Aut NdρLabelID
C4.1(C3.S4) = C12.1S4φ: C3.S4/C3.A4C2 ⊆ Aut C4726-C4.1(C3.S4)288,332
C4.2(C3.S4) = C12.3S4φ: C3.S4/C3.A4C2 ⊆ Aut C41444-C4.2(C3.S4)288,338
C4.3(C3.S4) = C12.4S4φ: C3.S4/C3.A4C2 ⊆ Aut C4724+C4.3(C3.S4)288,340
C4.4(C3.S4) = C12.S4central extension (φ=1)726C4.4(C3.S4)288,68
C4.5(C3.S4) = C12.9S4central extension (φ=1)724C4.5(C3.S4)288,70
C4.6(C3.S4) = C12.11S4central extension (φ=1)1444C4.6(C3.S4)288,339

׿
×
𝔽