Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C3xQ8

Direct product G=NxQ with N=C2xC6 and Q=C3xQ8
dρLabelID
Q8xC62288Q8xC6^2288,1020

Semidirect products G=N:Q with N=C2xC6 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC6):(C3xQ8) = A4xDic6φ: C3xQ8/C4C6 ⊆ Aut C2xC6726-(C2xC6):(C3xQ8)288,918
(C2xC6):2(C3xQ8) = C3xDic3.D4φ: C3xQ8/C6C22 ⊆ Aut C2xC648(C2xC6):2(C3xQ8)288,649
(C2xC6):3(C3xQ8) = C3xQ8xA4φ: C3xQ8/Q8C3 ⊆ Aut C2xC6726(C2xC6):3(C3xQ8)288,982
(C2xC6):4(C3xQ8) = C32xC22:Q8φ: C3xQ8/C12C2 ⊆ Aut C2xC6144(C2xC6):4(C3xQ8)288,819
(C2xC6):5(C3xQ8) = C3xC12.48D4φ: C3xQ8/C12C2 ⊆ Aut C2xC648(C2xC6):5(C3xQ8)288,695
(C2xC6):6(C3xQ8) = C2xC6xDic6φ: C3xQ8/C12C2 ⊆ Aut C2xC696(C2xC6):6(C3xQ8)288,988

Non-split extensions G=N.Q with N=C2xC6 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC6).(C3xQ8) = C3xC12.53D4φ: C3xQ8/C6C22 ⊆ Aut C2xC6484(C2xC6).(C3xQ8)288,256
(C2xC6).2(C3xQ8) = Q8xC3.A4φ: C3xQ8/Q8C3 ⊆ Aut C2xC6726(C2xC6).2(C3xQ8)288,346
(C2xC6).3(C3xQ8) = C9xC8.C4φ: C3xQ8/C12C2 ⊆ Aut C2xC61442(C2xC6).3(C3xQ8)288,58
(C2xC6).4(C3xQ8) = C9xC22:Q8φ: C3xQ8/C12C2 ⊆ Aut C2xC6144(C2xC6).4(C3xQ8)288,172
(C2xC6).5(C3xQ8) = C32xC8.C4φ: C3xQ8/C12C2 ⊆ Aut C2xC6144(C2xC6).5(C3xQ8)288,326
(C2xC6).6(C3xQ8) = C3xC24.C4φ: C3xQ8/C12C2 ⊆ Aut C2xC6482(C2xC6).6(C3xQ8)288,253
(C2xC6).7(C3xQ8) = C3xC6.C42φ: C3xQ8/C12C2 ⊆ Aut C2xC696(C2xC6).7(C3xQ8)288,265
(C2xC6).8(C3xQ8) = C6xDic3:C4φ: C3xQ8/C12C2 ⊆ Aut C2xC696(C2xC6).8(C3xQ8)288,694
(C2xC6).9(C3xQ8) = C6xC4:Dic3φ: C3xQ8/C12C2 ⊆ Aut C2xC696(C2xC6).9(C3xQ8)288,696
(C2xC6).10(C3xQ8) = C9xC2.C42central extension (φ=1)288(C2xC6).10(C3xQ8)288,45
(C2xC6).11(C3xQ8) = C4:C4xC18central extension (φ=1)288(C2xC6).11(C3xQ8)288,166
(C2xC6).12(C3xQ8) = C32xC2.C42central extension (φ=1)288(C2xC6).12(C3xQ8)288,313
(C2xC6).13(C3xQ8) = Q8xC2xC18central extension (φ=1)288(C2xC6).13(C3xQ8)288,369
(C2xC6).14(C3xQ8) = C4:C4xC3xC6central extension (φ=1)288(C2xC6).14(C3xQ8)288,813

׿
x
:
Z
F
o
wr
Q
<