Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C3×Q8

Direct product G=N×Q with N=C2×C6 and Q=C3×Q8
dρLabelID
Q8×C62288Q8xC6^2288,1020

Semidirect products G=N:Q with N=C2×C6 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊(C3×Q8) = A4×Dic6φ: C3×Q8/C4C6 ⊆ Aut C2×C6726-(C2xC6):(C3xQ8)288,918
(C2×C6)⋊2(C3×Q8) = C3×Dic3.D4φ: C3×Q8/C6C22 ⊆ Aut C2×C648(C2xC6):2(C3xQ8)288,649
(C2×C6)⋊3(C3×Q8) = C3×Q8×A4φ: C3×Q8/Q8C3 ⊆ Aut C2×C6726(C2xC6):3(C3xQ8)288,982
(C2×C6)⋊4(C3×Q8) = C32×C22⋊Q8φ: C3×Q8/C12C2 ⊆ Aut C2×C6144(C2xC6):4(C3xQ8)288,819
(C2×C6)⋊5(C3×Q8) = C3×C12.48D4φ: C3×Q8/C12C2 ⊆ Aut C2×C648(C2xC6):5(C3xQ8)288,695
(C2×C6)⋊6(C3×Q8) = C2×C6×Dic6φ: C3×Q8/C12C2 ⊆ Aut C2×C696(C2xC6):6(C3xQ8)288,988

Non-split extensions G=N.Q with N=C2×C6 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
(C2×C6).(C3×Q8) = C3×C12.53D4φ: C3×Q8/C6C22 ⊆ Aut C2×C6484(C2xC6).(C3xQ8)288,256
(C2×C6).2(C3×Q8) = Q8×C3.A4φ: C3×Q8/Q8C3 ⊆ Aut C2×C6726(C2xC6).2(C3xQ8)288,346
(C2×C6).3(C3×Q8) = C9×C8.C4φ: C3×Q8/C12C2 ⊆ Aut C2×C61442(C2xC6).3(C3xQ8)288,58
(C2×C6).4(C3×Q8) = C9×C22⋊Q8φ: C3×Q8/C12C2 ⊆ Aut C2×C6144(C2xC6).4(C3xQ8)288,172
(C2×C6).5(C3×Q8) = C32×C8.C4φ: C3×Q8/C12C2 ⊆ Aut C2×C6144(C2xC6).5(C3xQ8)288,326
(C2×C6).6(C3×Q8) = C3×C24.C4φ: C3×Q8/C12C2 ⊆ Aut C2×C6482(C2xC6).6(C3xQ8)288,253
(C2×C6).7(C3×Q8) = C3×C6.C42φ: C3×Q8/C12C2 ⊆ Aut C2×C696(C2xC6).7(C3xQ8)288,265
(C2×C6).8(C3×Q8) = C6×Dic3⋊C4φ: C3×Q8/C12C2 ⊆ Aut C2×C696(C2xC6).8(C3xQ8)288,694
(C2×C6).9(C3×Q8) = C6×C4⋊Dic3φ: C3×Q8/C12C2 ⊆ Aut C2×C696(C2xC6).9(C3xQ8)288,696
(C2×C6).10(C3×Q8) = C9×C2.C42central extension (φ=1)288(C2xC6).10(C3xQ8)288,45
(C2×C6).11(C3×Q8) = C4⋊C4×C18central extension (φ=1)288(C2xC6).11(C3xQ8)288,166
(C2×C6).12(C3×Q8) = C32×C2.C42central extension (φ=1)288(C2xC6).12(C3xQ8)288,313
(C2×C6).13(C3×Q8) = Q8×C2×C18central extension (φ=1)288(C2xC6).13(C3xQ8)288,369
(C2×C6).14(C3×Q8) = C4⋊C4×C3×C6central extension (φ=1)288(C2xC6).14(C3xQ8)288,813

׿
×
𝔽