Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C4○D4

Direct product G=N×Q with N=C3⋊S3 and Q=C4○D4
dρLabelID
C4○D4×C3⋊S372C4oD4xC3:S3288,1013

Semidirect products G=N:Q with N=C3⋊S3 and Q=C4○D4
extensionφ:Q→Out NdρLabelID
C3⋊S31(C4○D4) = D1223D6φ: C4○D4/C2×C4C2 ⊆ Out C3⋊S3244C3:S3:1(C4oD4)288,954
C3⋊S32(C4○D4) = Dic612D6φ: C4○D4/D4C2 ⊆ Out C3⋊S3248+C3:S3:2(C4oD4)288,960
C3⋊S33(C4○D4) = D1215D6φ: C4○D4/Q8C2 ⊆ Out C3⋊S3488-C3:S3:3(C4oD4)288,967

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C4○D4
extensionφ:Q→Out NdρLabelID
C3⋊S3.1(C4○D4) = S32⋊Q8φ: C4○D4/C4C22 ⊆ Out C3⋊S3244C3:S3.1(C4oD4)288,868
C3⋊S3.2(C4○D4) = C4.4S3≀C2φ: C4○D4/C4C22 ⊆ Out C3⋊S3248+C3:S3.2(C4oD4)288,869
C3⋊S3.3(C4○D4) = C4×S3≀C2φ: C4○D4/C4C22 ⊆ Out C3⋊S3244C3:S3.3(C4oD4)288,877
C3⋊S3.4(C4○D4) = S32⋊D4φ: C4○D4/C4C22 ⊆ Out C3⋊S3244C3:S3.4(C4oD4)288,878
C3⋊S3.5(C4○D4) = C4.3PSU3(𝔽2)φ: C4○D4/C4C22 ⊆ Out C3⋊S3488C3:S3.5(C4oD4)288,891
C3⋊S3.6(C4○D4) = C4×PSU3(𝔽2)φ: C4○D4/C4C22 ⊆ Out C3⋊S3368C3:S3.6(C4oD4)288,892
C3⋊S3.7(C4○D4) = C62.9D4φ: C4○D4/C22C22 ⊆ Out C3⋊S3244C3:S3.7(C4oD4)288,881
C3⋊S3.8(C4○D4) = C62⋊D4φ: C4○D4/C22C22 ⊆ Out C3⋊S3248+C3:S3.8(C4oD4)288,890
C3⋊S3.9(C4○D4) = C62⋊Q8φ: C4○D4/C22C22 ⊆ Out C3⋊S3248+C3:S3.9(C4oD4)288,895
C3⋊S3.10(C4○D4) = (C6×C12)⋊5C4φ: C4○D4/C2×C4C2 ⊆ Out C3⋊S3244C3:S3.10(C4oD4)288,934
C3⋊S3.11(C4○D4) = D4×C32⋊C4φ: C4○D4/D4C2 ⊆ Out C3⋊S3248+C3:S3.11(C4oD4)288,936
C3⋊S3.12(C4○D4) = Q8×C32⋊C4φ: C4○D4/Q8C2 ⊆ Out C3⋊S3488-C3:S3.12(C4oD4)288,938

׿
×
𝔽