Extensions 1→N→G→Q→1 with N=C3:S3 and Q=C4oD4

Direct product G=NxQ with N=C3:S3 and Q=C4oD4
dρLabelID
C4oD4xC3:S372C4oD4xC3:S3288,1013

Semidirect products G=N:Q with N=C3:S3 and Q=C4oD4
extensionφ:Q→Out NdρLabelID
C3:S3:1(C4oD4) = D12:23D6φ: C4oD4/C2xC4C2 ⊆ Out C3:S3244C3:S3:1(C4oD4)288,954
C3:S3:2(C4oD4) = Dic6:12D6φ: C4oD4/D4C2 ⊆ Out C3:S3248+C3:S3:2(C4oD4)288,960
C3:S3:3(C4oD4) = D12:15D6φ: C4oD4/Q8C2 ⊆ Out C3:S3488-C3:S3:3(C4oD4)288,967

Non-split extensions G=N.Q with N=C3:S3 and Q=C4oD4
extensionφ:Q→Out NdρLabelID
C3:S3.1(C4oD4) = S32:Q8φ: C4oD4/C4C22 ⊆ Out C3:S3244C3:S3.1(C4oD4)288,868
C3:S3.2(C4oD4) = C4.4S3wrC2φ: C4oD4/C4C22 ⊆ Out C3:S3248+C3:S3.2(C4oD4)288,869
C3:S3.3(C4oD4) = C4xS3wrC2φ: C4oD4/C4C22 ⊆ Out C3:S3244C3:S3.3(C4oD4)288,877
C3:S3.4(C4oD4) = S32:D4φ: C4oD4/C4C22 ⊆ Out C3:S3244C3:S3.4(C4oD4)288,878
C3:S3.5(C4oD4) = C4.3PSU3(F2)φ: C4oD4/C4C22 ⊆ Out C3:S3488C3:S3.5(C4oD4)288,891
C3:S3.6(C4oD4) = C4xPSU3(F2)φ: C4oD4/C4C22 ⊆ Out C3:S3368C3:S3.6(C4oD4)288,892
C3:S3.7(C4oD4) = C62.9D4φ: C4oD4/C22C22 ⊆ Out C3:S3244C3:S3.7(C4oD4)288,881
C3:S3.8(C4oD4) = C62:D4φ: C4oD4/C22C22 ⊆ Out C3:S3248+C3:S3.8(C4oD4)288,890
C3:S3.9(C4oD4) = C62:Q8φ: C4oD4/C22C22 ⊆ Out C3:S3248+C3:S3.9(C4oD4)288,895
C3:S3.10(C4oD4) = (C6xC12):5C4φ: C4oD4/C2xC4C2 ⊆ Out C3:S3244C3:S3.10(C4oD4)288,934
C3:S3.11(C4oD4) = D4xC32:C4φ: C4oD4/D4C2 ⊆ Out C3:S3248+C3:S3.11(C4oD4)288,936
C3:S3.12(C4oD4) = Q8xC32:C4φ: C4oD4/Q8C2 ⊆ Out C3:S3488-C3:S3.12(C4oD4)288,938

׿
x
:
Z
F
o
wr
Q
<