Copied to
clipboard

G = D12:15D6order 288 = 25·32

9th semidirect product of D12 and D6 acting via D6/S3=C2

metabelian, supersoluble, monomial

Aliases: D12:15D6, Q8:7S32, (C4xS3):10D6, (C3xQ8):12D6, Q8:3S3:9S3, D6:D6:13C2, C6.26(S3xC23), (C3xC6).26C24, D12:5S3:12C2, (S3xC12):10C22, D6:S3:6C22, (C3xD12):17C22, (S3xC6).14C23, C12.38(C22xS3), (C3xC12).38C23, D6.14(C22xS3), (S3xDic3):15C22, C3:Dic3.26C23, (Q8xC32):11C22, C32:4Q8:12C22, Dic3.27(C22xS3), (C3xDic3).27C23, C6.D6.15C22, (C4xS32):8C2, C4.38(C2xS32), C3:6(S3xC4oD4), (Q8xC3:S3):8C2, C3:S3:3(C4oD4), C2.28(C22xS32), C32:10(C2xC4oD4), (C2xS32).14C22, (C3xQ8:3S3):9C2, (C4xC3:S3).47C22, (C2xC3:S3).48C23, SmallGroup(288,967)

Series: Derived Chief Lower central Upper central

C1C3xC6 — D12:15D6
C1C3C32C3xC6S3xC6C2xS32C4xS32 — D12:15D6
C32C3xC6 — D12:15D6
C1C2Q8

Generators and relations for D12:15D6
 G = < a,b,c,d | a12=b2=c6=d2=1, bab=a-1, cac-1=a5, ad=da, cbc-1=a10b, dbd=a6b, dcd=c-1 >

Subgroups: 1250 in 347 conjugacy classes, 110 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, D4, Q8, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C22xC4, C2xD4, C2xQ8, C4oD4, C3xS3, C3:S3, C3xC6, Dic6, C4xS3, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C3xQ8, C3xQ8, C22xS3, C2xC4oD4, C3xDic3, C3:Dic3, C3xC12, S32, S3xC6, C2xC3:S3, S3xC2xC4, C4oD12, S3xD4, D4:2S3, S3xQ8, Q8:3S3, C3xC4oD4, S3xDic3, C6.D6, D6:S3, S3xC12, C3xD12, C32:4Q8, C4xC3:S3, Q8xC32, C2xS32, S3xC4oD4, D12:5S3, C4xS32, D6:D6, C3xQ8:3S3, Q8xC3:S3, D12:15D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, S32, S3xC23, C2xS32, S3xC4oD4, C22xS32, D12:15D6

Smallest permutation representation of D12:15D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 25)(2 36)(3 35)(4 34)(5 33)(6 32)(7 31)(8 30)(9 29)(10 28)(11 27)(12 26)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 40)(21 39)(22 38)(23 37)(24 48)
(1 16 5 24 9 20)(2 21 6 17 10 13)(3 14 7 22 11 18)(4 19 8 15 12 23)(25 46 33 38 29 42)(26 39 34 43 30 47)(27 44 35 48 31 40)(28 37 36 41 32 45)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 13)(25 40)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 48)(34 37)(35 38)(36 39)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,25)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,16,5,24,9,20)(2,21,6,17,10,13)(3,14,7,22,11,18)(4,19,8,15,12,23)(25,46,33,38,29,42)(26,39,34,43,30,47)(27,44,35,48,31,40)(28,37,36,41,32,45), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,25)(2,36)(3,35)(4,34)(5,33)(6,32)(7,31)(8,30)(9,29)(10,28)(11,27)(12,26)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,16,5,24,9,20)(2,21,6,17,10,13)(3,14,7,22,11,18)(4,19,8,15,12,23)(25,46,33,38,29,42)(26,39,34,43,30,47)(27,44,35,48,31,40)(28,37,36,41,32,45), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,13)(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,25),(2,36),(3,35),(4,34),(5,33),(6,32),(7,31),(8,30),(9,29),(10,28),(11,27),(12,26),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,40),(21,39),(22,38),(23,37),(24,48)], [(1,16,5,24,9,20),(2,21,6,17,10,13),(3,14,7,22,11,18),(4,19,8,15,12,23),(25,46,33,38,29,42),(26,39,34,43,30,47),(27,44,35,48,31,40),(28,37,36,41,32,45)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,13),(25,40),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,48),(34,37),(35,38),(36,39)]])

45 conjugacy classes

class 1 2A2B···2G2H2I3A3B3C4A4B4C4D4E4F4G4H4I4J6A6B6C6D···6I12A···12F12G12H12I12J12K12L12M
order122···22233344444444446666···612···1212121212121212
size116···699224222333318181822412···124···46666888

45 irreducible representations

dim111111222224448
type++++++++++++-
imageC1C2C2C2C2C2S3D6D6D6C4oD4S32C2xS32S3xC4oD4D12:15D6
kernelD12:15D6D12:5S3C4xS32D6:D6C3xQ8:3S3Q8xC3:S3Q8:3S3C4xS3D12C3xQ8C3:S3Q8C4C3C1
# reps163321266241341

Matrix representation of D12:15D6 in GL6(F13)

1210000
1200000
00121100
001100
0000120
0000012
,
1200000
1210000
001200
0001200
000010
000001
,
010000
100000
008300
005500
000001
00001212
,
100000
010000
0051000
008800
000001
000010

G:=sub<GL(6,GF(13))| [12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,1,0,0,0,0,11,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,2,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,8,5,0,0,0,0,3,5,0,0,0,0,0,0,0,12,0,0,0,0,1,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,8,0,0,0,0,10,8,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D12:15D6 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{15}D_6
% in TeX

G:=Group("D12:15D6");
// GroupNames label

G:=SmallGroup(288,967);
// by ID

G=gap.SmallGroup(288,967);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,346,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^6=d^2=1,b*a*b=a^-1,c*a*c^-1=a^5,a*d=d*a,c*b*c^-1=a^10*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<