Copied to
clipboard

G = D12:23D6order 288 = 25·32

7th semidirect product of D12 and D6 acting via D6/C6=C2

metabelian, supersoluble, monomial

Aliases: D12:23D6, Dic6:22D6, C62.138C23, (C2xC12):4D6, C3:D4:6D6, C4oD12:7S3, (C4xS3):11D6, Dic3:D6:8C2, (C6xC12):6C22, D6:D6:15C2, (S3xC12):1C22, D6.4D6:8C2, D6.D6:4C2, (S3xC6).5C23, (C3xC6).13C24, C6.13(S3xC23), D12:S3:13C2, D6.6(C22xS3), (C3xD12):30C22, (S3xDic3):6C22, Dic3.D6:15C2, D6:S3:13C22, C3:D12:14C22, C12.151(C22xS3), (C3xC12).118C23, (C3xDic6):29C22, C32:2Q8:12C22, C3:Dic3.39C23, (C3xDic3).8C23, Dic3.5(C22xS3), C6.D6.9C22, (C4xS32):3C2, (C2xC4):10S32, C4.98(C2xS32), C3:2(S3xC4oD4), C32:6(C2xC4oD4), C3:S3:1(C4oD4), C2.15(C22xS32), C22.12(C2xS32), (C3xC4oD12):12C2, (C4xC3:S3):13C22, (C2xS32).10C22, (C3xC3:D4):7C22, (C2xC3:S3).45C23, (C2xC6).14(C22xS3), (C2xC3:Dic3):22C22, (C22xC3:S3).104C22, (C2xC4xC3:S3):6C2, SmallGroup(288,954)

Series: Derived Chief Lower central Upper central

C1C3xC6 — D12:23D6
C1C3C32C3xC6S3xC6C2xS32C4xS32 — D12:23D6
C32C3xC6 — D12:23D6
C1C4C2xC4

Generators and relations for D12:23D6
 G = < a,b,c,d | a12=b2=c6=d2=1, bab=a-1, ac=ca, dad=a5, cbc-1=a6b, dbd=a10b, dcd=c-1 >

Subgroups: 1298 in 355 conjugacy classes, 110 normal (26 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C22xC4, C2xD4, C2xQ8, C4oD4, C3xS3, C3:S3, C3:S3, C3xC6, C3xC6, Dic6, Dic6, C4xS3, C4xS3, D12, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C2xC4oD4, C3xDic3, C3:Dic3, C3xC12, S32, S3xC6, C2xC3:S3, C2xC3:S3, C62, S3xC2xC4, C4oD12, C4oD12, S3xD4, D4:2S3, S3xQ8, Q8:3S3, C3xC4oD4, S3xDic3, C6.D6, D6:S3, C3:D12, C32:2Q8, C3xDic6, S3xC12, C3xD12, C3xC3:D4, C4xC3:S3, C2xC3:Dic3, C6xC12, C2xS32, C22xC3:S3, S3xC4oD4, D12:S3, Dic3.D6, D6.D6, C4xS32, D6:D6, D6.4D6, Dic3:D6, C3xC4oD12, C2xC4xC3:S3, D12:23D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, S32, S3xC23, C2xS32, S3xC4oD4, C22xS32, D12:23D6

Permutation representations of D12:23D6
On 24 points - transitive group 24T610
Generators in S24
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 23 21 19 17 15)(14 24 22 20 18 16)
(1 5)(2 10)(4 8)(7 11)(13 15)(14 20)(16 18)(17 23)(19 21)(22 24)

G:=sub<Sym(24)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,23,21,19,17,15)(14,24,22,20,18,16), (1,5)(2,10)(4,8)(7,11)(13,15)(14,20)(16,18)(17,23)(19,21)(22,24)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,23,21,19,17,15)(14,24,22,20,18,16), (1,5)(2,10)(4,8)(7,11)(13,15)(14,20)(16,18)(17,23)(19,21)(22,24) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,23,21,19,17,15),(14,24,22,20,18,16)], [(1,5),(2,10),(4,8),(7,11),(13,15),(14,20),(16,18),(17,23),(19,21),(22,24)]])

G:=TransitiveGroup(24,610);

48 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B3C4A4B4C4D4E4F4G4H4I4J6A6B6C···6G6H6I6J6K12A12B12C12D12E···12J12K12L12M12N
order12222222223334444444444666···666661212121212···1212121212
size1126666991822411266669918224···41212121222224···412121212

48 irreducible representations

dim1111111111222222244444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2S3D6D6D6D6D6C4oD4S32C2xS32C2xS32S3xC4oD4D12:23D6
kernelD12:23D6D12:S3Dic3.D6D6.D6C4xS32D6:D6D6.4D6Dic3:D6C3xC4oD12C2xC4xC3:S3C4oD12Dic6C4xS3D12C3:D4C2xC12C3:S3C2xC4C4C22C3C1
# reps1212212221224242412144

Matrix representation of D12:23D6 in GL4(F5) generated by

4403
1042
4411
2200
,
3401
0224
1144
2021
,
3422
4043
0342
0133
,
1313
2130
2303
4203
G:=sub<GL(4,GF(5))| [4,1,4,2,4,0,4,2,0,4,1,0,3,2,1,0],[3,0,1,2,4,2,1,0,0,2,4,2,1,4,4,1],[3,4,0,0,4,0,3,1,2,4,4,3,2,3,2,3],[1,2,2,4,3,1,3,2,1,3,0,0,3,0,3,3] >;

D12:23D6 in GAP, Magma, Sage, TeX

D_{12}\rtimes_{23}D_6
% in TeX

G:=Group("D12:23D6");
// GroupNames label

G:=SmallGroup(288,954);
// by ID

G=gap.SmallGroup(288,954);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,346,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^6=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,c*b*c^-1=a^6*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<