Extensions 1→N→G→Q→1 with N=C2×C3⋊S3 and Q=Q8

Direct product G=N×Q with N=C2×C3⋊S3 and Q=Q8
dρLabelID
C2×Q8×C3⋊S3144C2xQ8xC3:S3288,1010

Semidirect products G=N:Q with N=C2×C3⋊S3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3)⋊1Q8 = C62.58C23φ: Q8/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3):1Q8288,536
(C2×C3⋊S3)⋊2Q8 = C62.65C23φ: Q8/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3):2Q8288,543
(C2×C3⋊S3)⋊3Q8 = C62⋊Q8φ: Q8/C2C22 ⊆ Out C2×C3⋊S3248+(C2xC3:S3):3Q8288,895
(C2×C3⋊S3)⋊4Q8 = C22×PSU3(𝔽2)φ: Q8/C2C22 ⊆ Out C2×C3⋊S336(C2xC3:S3):4Q8288,1032
(C2×C3⋊S3)⋊5Q8 = C62.35C23φ: Q8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):5Q8288,513
(C2×C3⋊S3)⋊6Q8 = C12.30D12φ: Q8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):6Q8288,519
(C2×C3⋊S3)⋊7Q8 = C62.240C23φ: Q8/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3):7Q8288,753
(C2×C3⋊S3)⋊8Q8 = C12.31D12φ: Q8/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3):8Q8288,754
(C2×C3⋊S3)⋊9Q8 = C62.261C23φ: Q8/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3):9Q8288,803
(C2×C3⋊S3)⋊10Q8 = C2×Dic3.D6φ: Q8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):10Q8288,947

Non-split extensions G=N.Q with N=C2×C3⋊S3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3).1Q8 = C4.19S3≀C2φ: Q8/C2C22 ⊆ Out C2×C3⋊S3484(C2xC3:S3).1Q8288,381
(C2×C3⋊S3).2Q8 = C62.D4φ: Q8/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).2Q8288,385
(C2×C3⋊S3).3Q8 = C2×C3⋊S3.Q8φ: Q8/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).3Q8288,882
(C2×C3⋊S3).4Q8 = C2×C2.PSU3(𝔽2)φ: Q8/C2C22 ⊆ Out C2×C3⋊S348(C2xC3:S3).4Q8288,894
(C2×C3⋊S3).5Q8 = (C3×C24).C4φ: Q8/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).5Q8288,418
(C2×C3⋊S3).6Q8 = C8.(C32⋊C4)φ: Q8/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).6Q8288,419
(C2×C3⋊S3).7Q8 = (C6×C12)⋊2C4φ: Q8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).7Q8288,429
(C2×C3⋊S3).8Q8 = C62.53C23φ: Q8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).8Q8288,531
(C2×C3⋊S3).9Q8 = C62.70C23φ: Q8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).9Q8288,548
(C2×C3⋊S3).10Q8 = C2×C4⋊(C32⋊C4)φ: Q8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3).10Q8288,933
(C2×C3⋊S3).11Q8 = C4⋊C4×C3⋊S3φ: trivial image144(C2xC3:S3).11Q8288,748

׿
×
𝔽