non-abelian, soluble, monomial
Aliases: C4.19S3≀C2, (C3×C12).19D4, C32⋊2C8.4C4, C32⋊1(C8.C4), C12.31D6.2C2, (C2×C3⋊S3).1Q8, (C3×C6).2(C4⋊C4), C3⋊S3⋊3C8.3C2, C3⋊Dic3.8(C2×C4), C2.3(C3⋊S3.Q8), (C4×C3⋊S3).53C22, SmallGroup(288,381)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C4.19S3≀C2 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C4×C3⋊S3 — C12.31D6 — C4.19S3≀C2 |
C32 — C3×C6 — C3⋊Dic3 — C4.19S3≀C2 |
Generators and relations for C4.19S3≀C2
G = < a,b,c,d,e | a4=b3=c3=1, d4=a2, e2=a, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=c, ebe-1=dcd-1=b-1, ce=ec, ede-1=d3 >
Character table of C4.19S3≀C2
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 18 | 4 | 4 | 1 | 1 | 18 | 4 | 4 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | i | -i | -i | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | i | -i | -i | i | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -i | i | i | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -i | i | i | -i | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 2 | 2 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ11 | 2 | -2 | 0 | 2 | 2 | 2i | -2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √-2 | -√2 | -√-2 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ12 | 2 | -2 | 0 | 2 | 2 | -2i | 2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | -√-2 | -√2 | √-2 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ13 | 2 | -2 | 0 | 2 | 2 | -2i | 2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | √-2 | √2 | -√-2 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ14 | 2 | -2 | 0 | 2 | 2 | 2i | -2i | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√-2 | √2 | √-2 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.C4 |
ρ15 | 4 | 4 | 0 | -2 | 1 | 4 | 4 | 0 | 1 | -2 | 0 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | -2 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 0 | 1 | -2 | 4 | 4 | 0 | -2 | 1 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 0 | -2 | 1 | 4 | 4 | 0 | 1 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | -2 | 0 | -1 | -1 | 0 | 0 | -1 | -1 | 0 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 0 | 1 | -2 | 4 | 4 | 0 | -2 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | -1 | 0 | 0 | -1 | -1 | 0 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | 0 | -2 | 1 | -4 | -4 | 0 | 1 | -2 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 2 | 0 | i | i | 0 | 0 | -i | -i | 0 | complex lifted from C3⋊S3.Q8 |
ρ20 | 4 | 4 | 0 | 1 | -2 | -4 | -4 | 0 | -2 | 1 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | i | 0 | 0 | i | -i | 0 | 0 | -i | complex lifted from C3⋊S3.Q8 |
ρ21 | 4 | 4 | 0 | 1 | -2 | -4 | -4 | 0 | -2 | 1 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -i | 0 | 0 | -i | i | 0 | 0 | i | complex lifted from C3⋊S3.Q8 |
ρ22 | 4 | 4 | 0 | -2 | 1 | -4 | -4 | 0 | 1 | -2 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 2 | 0 | -i | -i | 0 | 0 | i | i | 0 | complex lifted from C3⋊S3.Q8 |
ρ23 | 4 | -4 | 0 | -2 | 1 | 4i | -4i | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | 2i | -2i | 0 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 0 | 0 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | -2 | 1 | -4i | 4i | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | -2i | 2i | 0 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 0 | 0 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | -2 | 1 | -4i | 4i | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | -2i | 2i | 0 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 0 | 0 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 1 | -2 | 4i | -4i | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -i | i | 2ζ85ζ3+ζ85 | 0 | 0 | 2ζ8ζ3+ζ8 | 2ζ87ζ3+ζ87 | 0 | 0 | 2ζ83ζ3+ζ83 | complex faithful |
ρ27 | 4 | -4 | 0 | 1 | -2 | -4i | 4i | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | i | -i | 2ζ87ζ3+ζ87 | 0 | 0 | 2ζ83ζ3+ζ83 | 2ζ85ζ3+ζ85 | 0 | 0 | 2ζ8ζ3+ζ8 | complex faithful |
ρ28 | 4 | -4 | 0 | 1 | -2 | -4i | 4i | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | i | -i | 2ζ83ζ3+ζ83 | 0 | 0 | 2ζ87ζ3+ζ87 | 2ζ8ζ3+ζ8 | 0 | 0 | 2ζ85ζ3+ζ85 | complex faithful |
ρ29 | 4 | -4 | 0 | 1 | -2 | 4i | -4i | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -i | i | 2ζ8ζ3+ζ8 | 0 | 0 | 2ζ85ζ3+ζ85 | 2ζ83ζ3+ζ83 | 0 | 0 | 2ζ87ζ3+ζ87 | complex faithful |
ρ30 | 4 | -4 | 0 | -2 | 1 | 4i | -4i | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | 2i | -2i | 0 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 0 | 0 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 0 | complex faithful |
(1 7 5 3)(2 8 6 4)(9 37 13 33)(10 38 14 34)(11 39 15 35)(12 40 16 36)(17 19 21 23)(18 20 22 24)(25 43 29 47)(26 44 30 48)(27 45 31 41)(28 46 32 42)
(2 47 27)(4 29 41)(6 43 31)(8 25 45)(9 18 35)(11 37 20)(13 22 39)(15 33 24)
(1 46 26)(3 28 48)(5 42 30)(7 32 44)(10 36 19)(12 21 38)(14 40 23)(16 17 34)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23 7 17 5 19 3 21)(2 18 8 20 6 22 4 24)(9 25 37 43 13 29 33 47)(10 28 38 46 14 32 34 42)(11 31 39 41 15 27 35 45)(12 26 40 44 16 30 36 48)
G:=sub<Sym(48)| (1,7,5,3)(2,8,6,4)(9,37,13,33)(10,38,14,34)(11,39,15,35)(12,40,16,36)(17,19,21,23)(18,20,22,24)(25,43,29,47)(26,44,30,48)(27,45,31,41)(28,46,32,42), (2,47,27)(4,29,41)(6,43,31)(8,25,45)(9,18,35)(11,37,20)(13,22,39)(15,33,24), (1,46,26)(3,28,48)(5,42,30)(7,32,44)(10,36,19)(12,21,38)(14,40,23)(16,17,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,7,17,5,19,3,21)(2,18,8,20,6,22,4,24)(9,25,37,43,13,29,33,47)(10,28,38,46,14,32,34,42)(11,31,39,41,15,27,35,45)(12,26,40,44,16,30,36,48)>;
G:=Group( (1,7,5,3)(2,8,6,4)(9,37,13,33)(10,38,14,34)(11,39,15,35)(12,40,16,36)(17,19,21,23)(18,20,22,24)(25,43,29,47)(26,44,30,48)(27,45,31,41)(28,46,32,42), (2,47,27)(4,29,41)(6,43,31)(8,25,45)(9,18,35)(11,37,20)(13,22,39)(15,33,24), (1,46,26)(3,28,48)(5,42,30)(7,32,44)(10,36,19)(12,21,38)(14,40,23)(16,17,34), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,7,17,5,19,3,21)(2,18,8,20,6,22,4,24)(9,25,37,43,13,29,33,47)(10,28,38,46,14,32,34,42)(11,31,39,41,15,27,35,45)(12,26,40,44,16,30,36,48) );
G=PermutationGroup([[(1,7,5,3),(2,8,6,4),(9,37,13,33),(10,38,14,34),(11,39,15,35),(12,40,16,36),(17,19,21,23),(18,20,22,24),(25,43,29,47),(26,44,30,48),(27,45,31,41),(28,46,32,42)], [(2,47,27),(4,29,41),(6,43,31),(8,25,45),(9,18,35),(11,37,20),(13,22,39),(15,33,24)], [(1,46,26),(3,28,48),(5,42,30),(7,32,44),(10,36,19),(12,21,38),(14,40,23),(16,17,34)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23,7,17,5,19,3,21),(2,18,8,20,6,22,4,24),(9,25,37,43,13,29,33,47),(10,28,38,46,14,32,34,42),(11,31,39,41,15,27,35,45),(12,26,40,44,16,30,36,48)]])
Matrix representation of C4.19S3≀C2 ►in GL4(𝔽5) generated by
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 |
2 | 0 | 2 | 0 |
0 | 2 | 0 | 1 |
4 | 0 | 2 | 0 |
0 | 3 | 0 | 2 |
2 | 0 | 2 | 0 |
0 | 2 | 0 | 4 |
4 | 0 | 2 | 0 |
0 | 2 | 0 | 2 |
0 | 0 | 0 | 3 |
0 | 0 | 4 | 0 |
0 | 3 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 3 | 0 |
G:=sub<GL(4,GF(5))| [3,0,0,0,0,3,0,0,0,0,3,0,0,0,0,3],[2,0,4,0,0,2,0,3,2,0,2,0,0,1,0,2],[2,0,4,0,0,2,0,2,2,0,2,0,0,4,0,2],[0,0,0,1,0,0,3,0,0,4,0,0,3,0,0,0],[0,1,0,0,3,0,0,0,0,0,0,3,0,0,1,0] >;
C4.19S3≀C2 in GAP, Magma, Sage, TeX
C_4._{19}S_3\wr C_2
% in TeX
G:=Group("C4.19S3wrC2");
// GroupNames label
G:=SmallGroup(288,381);
// by ID
G=gap.SmallGroup(288,381);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,56,85,64,422,219,100,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^3=c^3=1,d^4=a^2,e^2=a,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=c,e*b*e^-1=d*c*d^-1=b^-1,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations
Export
Subgroup lattice of C4.19S3≀C2 in TeX
Character table of C4.19S3≀C2 in TeX