Extensions 1→N→G→Q→1 with N=C3×GL2(𝔽3) and Q=C2

Direct product G=N×Q with N=C3×GL2(𝔽3) and Q=C2
dρLabelID
C6×GL2(𝔽3)48C6xGL(2,3)288,900

Semidirect products G=N:Q with N=C3×GL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×GL2(𝔽3))⋊1C2 = GL2(𝔽3)⋊S3φ: C2/C1C2 ⊆ Out C3×GL2(𝔽3)484+(C3xGL(2,3)):1C2288,847
(C3×GL2(𝔽3))⋊2C2 = D6.S4φ: C2/C1C2 ⊆ Out C3×GL2(𝔽3)484-(C3xGL(2,3)):2C2288,849
(C3×GL2(𝔽3))⋊3C2 = Dic3.4S4φ: C2/C1C2 ⊆ Out C3×GL2(𝔽3)484(C3xGL(2,3)):3C2288,845
(C3×GL2(𝔽3))⋊4C2 = S3×GL2(𝔽3)φ: C2/C1C2 ⊆ Out C3×GL2(𝔽3)244(C3xGL(2,3)):4C2288,851
(C3×GL2(𝔽3))⋊5C2 = C3×Q8.D6φ: C2/C1C2 ⊆ Out C3×GL2(𝔽3)484(C3xGL(2,3)):5C2288,901
(C3×GL2(𝔽3))⋊6C2 = C3×C4.3S4φ: C2/C1C2 ⊆ Out C3×GL2(𝔽3)484(C3xGL(2,3)):6C2288,904
(C3×GL2(𝔽3))⋊7C2 = C3×C4.6S4φ: trivial image482(C3xGL(2,3)):7C2288,903


׿
×
𝔽