direct product, non-abelian, soluble
Aliases: S3×GL2(𝔽3), D6.4S4, SL2(𝔽3)⋊2D6, Q8⋊S32, (C3×Q8)⋊D6, C6.8(C2×S4), (S3×Q8)⋊3S3, C2.11(S3×S4), C6.6S4⋊4C2, C3⋊1(C2×GL2(𝔽3)), (S3×SL2(𝔽3))⋊3C2, (C3×GL2(𝔽3))⋊4C2, (C3×SL2(𝔽3))⋊2C22, GL2(ℤ/6ℤ), SmallGroup(288,851)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — C3×SL2(𝔽3) — S3×GL2(𝔽3) |
C1 — C2 — Q8 — C3×Q8 — C3×SL2(𝔽3) — S3×SL2(𝔽3) — S3×GL2(𝔽3) |
C3×SL2(𝔽3) — S3×GL2(𝔽3) |
Generators and relations for S3×GL2(𝔽3)
G = < a,b,c,d,e,f | a3=b2=c4=e3=f2=1, d2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fdf=c-1, ece-1=cd, fcf=c2d, ede-1=c, fef=e-1 >
Subgroups: 758 in 109 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, S3, C6, C6, C8, C2×C4, D4, Q8, Q8, C23, C32, Dic3, C12, D6, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, SL2(𝔽3), SL2(𝔽3), Dic6, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C2×SD16, S32, S3×C6, C2×C3⋊S3, S3×C8, C24⋊C2, D4.S3, Q8⋊2S3, C3×SD16, GL2(𝔽3), GL2(𝔽3), C2×SL2(𝔽3), S3×D4, S3×Q8, C3×SL2(𝔽3), C2×S32, S3×SD16, C2×GL2(𝔽3), C3×GL2(𝔽3), C6.6S4, S3×SL2(𝔽3), S3×GL2(𝔽3)
Quotients: C1, C2, C22, S3, D6, S4, S32, GL2(𝔽3), C2×S4, C2×GL2(𝔽3), S3×S4, S3×GL2(𝔽3)
Character table of S3×GL2(𝔽3)
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | 12 | 24A | 24B | |
size | 1 | 1 | 3 | 3 | 12 | 36 | 2 | 8 | 16 | 6 | 18 | 2 | 8 | 16 | 24 | 24 | 24 | 6 | 6 | 18 | 18 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -1 | -1 | 2 | -2 | 2 | -1 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 0 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 0 | -2 | 0 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | 1 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 0 | 1 | -1 | -√-2 | √-2 | -√-2 | √-2 | 0 | √-2 | -√-2 | complex lifted from GL2(𝔽3) |
ρ10 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 0 | 1 | -1 | √-2 | -√-2 | √-2 | -√-2 | 0 | -√-2 | √-2 | complex lifted from GL2(𝔽3) |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 0 | -1 | 1 | -√-2 | √-2 | √-2 | -√-2 | 0 | √-2 | -√-2 | complex lifted from GL2(𝔽3) |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 0 | -1 | 1 | √-2 | -√-2 | -√-2 | √-2 | 0 | -√-2 | √-2 | complex lifted from GL2(𝔽3) |
ρ13 | 3 | 3 | 3 | 3 | 1 | 1 | 3 | 0 | 0 | -1 | -1 | 3 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ14 | 3 | 3 | -3 | -3 | -1 | 1 | 3 | 0 | 0 | -1 | 1 | 3 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×S4 |
ρ15 | 3 | 3 | 3 | 3 | -1 | -1 | 3 | 0 | 0 | -1 | -1 | 3 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from S4 |
ρ16 | 3 | 3 | -3 | -3 | 1 | -1 | 3 | 0 | 0 | -1 | 1 | 3 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from C2×S4 |
ρ17 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | -4 | -1 | -1 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from GL2(𝔽3) |
ρ18 | 4 | -4 | -4 | 4 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | -4 | -1 | -1 | 0 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from GL2(𝔽3) |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from S32 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | -√-2 | √-2 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | √-2 | -√-2 | complex faithful |
ρ22 | 6 | 6 | 0 | 0 | 2 | 0 | -3 | 0 | 0 | -2 | 0 | -3 | 0 | 0 | -1 | 0 | 0 | -2 | -2 | 0 | 0 | 1 | 1 | 1 | orthogonal lifted from S3×S4 |
ρ23 | 6 | 6 | 0 | 0 | -2 | 0 | -3 | 0 | 0 | -2 | 0 | -3 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | 0 | 0 | 1 | -1 | -1 | orthogonal lifted from S3×S4 |
ρ24 | 8 | -8 | 0 | 0 | 0 | 0 | -4 | 2 | -1 | 0 | 0 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 16 24)(2 13 21)(3 14 22)(4 15 23)(5 11 19)(6 12 20)(7 9 17)(8 10 18)
(1 3)(2 4)(5 17)(6 18)(7 19)(8 20)(9 11)(10 12)(13 23)(14 24)(15 21)(16 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 11 3 9)(2 10 4 12)(5 22 7 24)(6 21 8 23)(13 18 15 20)(14 17 16 19)
(2 11 10)(4 9 12)(5 8 21)(6 23 7)(13 19 18)(15 17 20)
(1 3)(2 11)(4 9)(5 21)(7 23)(13 19)(14 16)(15 17)(22 24)
G:=sub<Sym(24)| (1,16,24)(2,13,21)(3,14,22)(4,15,23)(5,11,19)(6,12,20)(7,9,17)(8,10,18), (1,3)(2,4)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(13,23)(14,24)(15,21)(16,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,11,3,9)(2,10,4,12)(5,22,7,24)(6,21,8,23)(13,18,15,20)(14,17,16,19), (2,11,10)(4,9,12)(5,8,21)(6,23,7)(13,19,18)(15,17,20), (1,3)(2,11)(4,9)(5,21)(7,23)(13,19)(14,16)(15,17)(22,24)>;
G:=Group( (1,16,24)(2,13,21)(3,14,22)(4,15,23)(5,11,19)(6,12,20)(7,9,17)(8,10,18), (1,3)(2,4)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(13,23)(14,24)(15,21)(16,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,11,3,9)(2,10,4,12)(5,22,7,24)(6,21,8,23)(13,18,15,20)(14,17,16,19), (2,11,10)(4,9,12)(5,8,21)(6,23,7)(13,19,18)(15,17,20), (1,3)(2,11)(4,9)(5,21)(7,23)(13,19)(14,16)(15,17)(22,24) );
G=PermutationGroup([[(1,16,24),(2,13,21),(3,14,22),(4,15,23),(5,11,19),(6,12,20),(7,9,17),(8,10,18)], [(1,3),(2,4),(5,17),(6,18),(7,19),(8,20),(9,11),(10,12),(13,23),(14,24),(15,21),(16,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,11,3,9),(2,10,4,12),(5,22,7,24),(6,21,8,23),(13,18,15,20),(14,17,16,19)], [(2,11,10),(4,9,12),(5,8,21),(6,23,7),(13,19,18),(15,17,20)], [(1,3),(2,11),(4,9),(5,21),(7,23),(13,19),(14,16),(15,17),(22,24)]])
G:=TransitiveGroup(24,678);
Matrix representation of S3×GL2(𝔽3) ►in GL4(𝔽73) generated by
71 | 69 | 0 | 0 |
19 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 |
19 | 1 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 45 | 56 |
0 | 0 | 29 | 28 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 57 | 44 |
0 | 0 | 29 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 |
0 | 0 | 1 | 72 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 |
0 | 0 | 0 | 72 |
G:=sub<GL(4,GF(73))| [71,19,0,0,69,1,0,0,0,0,1,0,0,0,0,1],[72,19,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,45,29,0,0,56,28],[1,0,0,0,0,1,0,0,0,0,57,29,0,0,44,16],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,72,72],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,72,72] >;
S3×GL2(𝔽3) in GAP, Magma, Sage, TeX
S_3\times {\rm GL}_2({\mathbb F}_3)
% in TeX
G:=Group("S3xGL(2,3)");
// GroupNames label
G:=SmallGroup(288,851);
// by ID
G=gap.SmallGroup(288,851);
# by ID
G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,93,675,1271,1908,172,768,1153,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=e^3=f^2=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*d*f=c^-1,e*c*e^-1=c*d,f*c*f=c^2*d,e*d*e^-1=c,f*e*f=e^-1>;
// generators/relations
Export