Copied to
clipboard

G = GL2(𝔽3)⋊S3order 288 = 25·32

1st semidirect product of GL2(𝔽3) and S3 acting via S3/C3=C2

non-abelian, soluble

Aliases: Dic3.2S4, GL2(𝔽3)⋊1S3, SL2(𝔽3)⋊1D6, Q8.4S32, C2.7(S3×S4), C6.4(C2×S4), (C3×Q8).4D6, C6.6S42C2, Q83S33S3, C31(C4.3S4), Dic3.A43C2, (C3×GL2(𝔽3))⋊1C2, (C3×SL2(𝔽3))⋊1C22, SmallGroup(288,847)

Series: Derived Chief Lower central Upper central

C1C2Q8C3×SL2(𝔽3) — GL2(𝔽3)⋊S3
C1C2Q8C3×Q8C3×SL2(𝔽3)Dic3.A4 — GL2(𝔽3)⋊S3
C3×SL2(𝔽3) — GL2(𝔽3)⋊S3
C1C2

Generators and relations for GL2(𝔽3)⋊S3
 G = < a,b,c,d,e | a4=c3=d6=e2=1, b2=a2, bab-1=dbd-1=a-1, cac-1=eae=b, dad-1=a2b, cbc-1=ab, ebe=a, dcd-1=c-1, ece=ac-1, ede=d-1 >

Subgroups: 678 in 91 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, C2×C4, D4, Q8, C23, C32, Dic3, C12, D6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, SL2(𝔽3), SL2(𝔽3), C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C8⋊C22, C3×Dic3, S3×C6, C2×C3⋊S3, C8⋊S3, D24, D4⋊S3, Q82S3, C3×SD16, GL2(𝔽3), GL2(𝔽3), C4.A4, S3×D4, Q83S3, C3⋊D12, C3×SL2(𝔽3), Q83D6, C4.3S4, C3×GL2(𝔽3), C6.6S4, Dic3.A4, GL2(𝔽3)⋊S3
Quotients: C1, C2, C22, S3, D6, S4, S32, C2×S4, C4.3S4, S3×S4, GL2(𝔽3)⋊S3

Character table of GL2(𝔽3)⋊S3

 class 12A2B2C2D3A3B3C4A4B6A6B6C6D8A8B12A12B12C24A24B
 size 1112183628166628162412361224241212
ρ1111111111111111111111    trivial
ρ211-11-111111111-1-1-1111-1-1    linear of order 2
ρ311-1-111111-1111-1-111-1-1-1-1    linear of order 2
ρ4111-1-11111-111111-11-1-111    linear of order 2
ρ5220-202-1-12-22-1-100021100    orthogonal lifted from D6
ρ622200-12-120-12-1-120-100-1-1    orthogonal lifted from S3
ρ7220202-1-1222-1-10002-1-100    orthogonal lifted from S3
ρ822-200-12-120-12-11-20-10011    orthogonal lifted from D6
ρ933-111300-1-3300-11-1-10011    orthogonal lifted from C2×S4
ρ1033-1-1-1300-13300-111-10011    orthogonal lifted from S4
ρ113311-1300-1-33001-11-100-1-1    orthogonal lifted from C2×S4
ρ12331-11300-133001-1-1-100-1-1    orthogonal lifted from S4
ρ1344000-2-2140-2-21000-20000    orthogonal lifted from S32
ρ144-40004-2-200-42200000000    orthogonal lifted from C4.3S4
ρ154-400041100-4-1-10000-3300    orthogonal lifted from C4.3S4
ρ164-400041100-4-1-100003-300    orthogonal lifted from C4.3S4
ρ174-4000-2-210022-1000000-66    orthogonal faithful
ρ184-4000-2-210022-10000006-6    orthogonal faithful
ρ1966200-300-20-300-1-2010011    orthogonal lifted from S3×S4
ρ2066-200-300-20-300120100-1-1    orthogonal lifted from S3×S4
ρ218-8000-42-1004-2100000000    orthogonal faithful

Smallest permutation representation of GL2(𝔽3)⋊S3
On 48 points
Generators in S48
(1 16 26 21)(2 7 27 44)(3 18 28 23)(4 9 29 46)(5 14 30 19)(6 11 25 48)(8 36 45 42)(10 32 47 38)(12 34 43 40)(13 37 24 31)(15 39 20 33)(17 41 22 35)
(1 43 26 12)(2 22 27 17)(3 45 28 8)(4 24 29 13)(5 47 30 10)(6 20 25 15)(7 41 44 35)(9 37 46 31)(11 39 48 33)(14 32 19 38)(16 34 21 40)(18 36 23 42)
(1 5 3)(2 4 6)(7 37 20)(8 21 38)(9 39 22)(10 23 40)(11 41 24)(12 19 42)(13 48 35)(14 36 43)(15 44 31)(16 32 45)(17 46 33)(18 34 47)(25 27 29)(26 30 28)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 42)(2 41)(3 40)(4 39)(5 38)(6 37)(7 44)(8 43)(9 48)(10 47)(11 46)(12 45)(13 15)(16 18)(20 24)(21 23)(25 31)(26 36)(27 35)(28 34)(29 33)(30 32)

G:=sub<Sym(48)| (1,16,26,21)(2,7,27,44)(3,18,28,23)(4,9,29,46)(5,14,30,19)(6,11,25,48)(8,36,45,42)(10,32,47,38)(12,34,43,40)(13,37,24,31)(15,39,20,33)(17,41,22,35), (1,43,26,12)(2,22,27,17)(3,45,28,8)(4,24,29,13)(5,47,30,10)(6,20,25,15)(7,41,44,35)(9,37,46,31)(11,39,48,33)(14,32,19,38)(16,34,21,40)(18,36,23,42), (1,5,3)(2,4,6)(7,37,20)(8,21,38)(9,39,22)(10,23,40)(11,41,24)(12,19,42)(13,48,35)(14,36,43)(15,44,31)(16,32,45)(17,46,33)(18,34,47)(25,27,29)(26,30,28), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,44)(8,43)(9,48)(10,47)(11,46)(12,45)(13,15)(16,18)(20,24)(21,23)(25,31)(26,36)(27,35)(28,34)(29,33)(30,32)>;

G:=Group( (1,16,26,21)(2,7,27,44)(3,18,28,23)(4,9,29,46)(5,14,30,19)(6,11,25,48)(8,36,45,42)(10,32,47,38)(12,34,43,40)(13,37,24,31)(15,39,20,33)(17,41,22,35), (1,43,26,12)(2,22,27,17)(3,45,28,8)(4,24,29,13)(5,47,30,10)(6,20,25,15)(7,41,44,35)(9,37,46,31)(11,39,48,33)(14,32,19,38)(16,34,21,40)(18,36,23,42), (1,5,3)(2,4,6)(7,37,20)(8,21,38)(9,39,22)(10,23,40)(11,41,24)(12,19,42)(13,48,35)(14,36,43)(15,44,31)(16,32,45)(17,46,33)(18,34,47)(25,27,29)(26,30,28), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,42)(2,41)(3,40)(4,39)(5,38)(6,37)(7,44)(8,43)(9,48)(10,47)(11,46)(12,45)(13,15)(16,18)(20,24)(21,23)(25,31)(26,36)(27,35)(28,34)(29,33)(30,32) );

G=PermutationGroup([[(1,16,26,21),(2,7,27,44),(3,18,28,23),(4,9,29,46),(5,14,30,19),(6,11,25,48),(8,36,45,42),(10,32,47,38),(12,34,43,40),(13,37,24,31),(15,39,20,33),(17,41,22,35)], [(1,43,26,12),(2,22,27,17),(3,45,28,8),(4,24,29,13),(5,47,30,10),(6,20,25,15),(7,41,44,35),(9,37,46,31),(11,39,48,33),(14,32,19,38),(16,34,21,40),(18,36,23,42)], [(1,5,3),(2,4,6),(7,37,20),(8,21,38),(9,39,22),(10,23,40),(11,41,24),(12,19,42),(13,48,35),(14,36,43),(15,44,31),(16,32,45),(17,46,33),(18,34,47),(25,27,29),(26,30,28)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,42),(2,41),(3,40),(4,39),(5,38),(6,37),(7,44),(8,43),(9,48),(10,47),(11,46),(12,45),(13,15),(16,18),(20,24),(21,23),(25,31),(26,36),(27,35),(28,34),(29,33),(30,32)]])

Matrix representation of GL2(𝔽3)⋊S3 in GL4(𝔽5) generated by

3031
1422
3322
1101
,
2202
4341
1333
1012
,
2412
1144
4022
0223
,
1242
0403
3203
2310
,
0114
0030
0200
4230
G:=sub<GL(4,GF(5))| [3,1,3,1,0,4,3,1,3,2,2,0,1,2,2,1],[2,4,1,1,2,3,3,0,0,4,3,1,2,1,3,2],[2,1,4,0,4,1,0,2,1,4,2,2,2,4,2,3],[1,0,3,2,2,4,2,3,4,0,0,1,2,3,3,0],[0,0,0,4,1,0,2,2,1,3,0,3,4,0,0,0] >;

GL2(𝔽3)⋊S3 in GAP, Magma, Sage, TeX

{\rm GL}_2({\mathbb F}_3)\rtimes S_3
% in TeX

G:=Group("GL(2,3):S3");
// GroupNames label

G:=SmallGroup(288,847);
// by ID

G=gap.SmallGroup(288,847);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-2,1008,2045,93,675,1271,1908,172,768,1153,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^3=d^6=e^2=1,b^2=a^2,b*a*b^-1=d*b*d^-1=a^-1,c*a*c^-1=e*a*e=b,d*a*d^-1=a^2*b,c*b*c^-1=a*b,e*b*e=a,d*c*d^-1=c^-1,e*c*e=a*c^-1,e*d*e=d^-1>;
// generators/relations

Export

Character table of GL2(𝔽3)⋊S3 in TeX

׿
×
𝔽