Copied to
clipboard

G = C3⋊S3.2D8order 288 = 25·32

1st non-split extension by C3⋊S3 of D8 acting via D8/C4=C22

non-abelian, soluble, monomial

Aliases: C3⋊S3.2D8, C4.11S3≀C2, (C3×C12).3D4, D6⋊S31C4, C3⋊S3.2SD16, D6⋊D6.2C2, C12.29D67C2, C322(D4⋊C4), C2.5(S32⋊C4), (C2×C3⋊S3).5D4, C4⋊(C32⋊C4)⋊1C2, (C4×C3⋊S3).3C22, C3⋊Dic3.5(C2×C4), (C3×C6).4(C22⋊C4), SmallGroup(288,377)

Series: Derived Chief Lower central Upper central

C1C32C3⋊Dic3 — C3⋊S3.2D8
C1C32C3×C6C3⋊Dic3C4×C3⋊S3D6⋊D6 — C3⋊S3.2D8
C32C3×C6C3⋊Dic3 — C3⋊S3.2D8
C1C2C4

Generators and relations for C3⋊S3.2D8
 G = < a,b,c,d,e | a3=b3=c2=d8=1, e2=c, ab=ba, cac=dbd-1=a-1, dad-1=eae-1=cbc=b-1, ebe-1=a, cd=dc, ce=ec, ede-1=cd-1 >

Subgroups: 560 in 88 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, D4, C23, C32, Dic3, C12, D6, C2×C6, C4⋊C4, C2×C8, C2×D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, D4⋊C4, C3⋊Dic3, C3×C12, C32⋊C4, S32, S3×C6, C2×C3⋊S3, S3×C8, S3×D4, C3×C3⋊C8, D6⋊S3, C3×D12, C4×C3⋊S3, C2×C32⋊C4, C2×S32, C12.29D6, C4⋊(C32⋊C4), D6⋊D6, C3⋊S3.2D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, D4⋊C4, S3≀C2, S32⋊C4, C3⋊S3.2D8

Character table of C3⋊S3.2D8

 class 12A2B2C2D2E3A3B4A4B4C4D6A6B6C6D8A8B8C8D12A12B12C24A24B24C24D
 size 11991212442183636442424666644812121212
ρ1111111111111111111111111111    trivial
ρ21111111111-1-11111-1-1-1-1111-1-1-1-1    linear of order 2
ρ31111-1-111111111-1-1-1-1-1-1111-1-1-1-1    linear of order 2
ρ41111-1-11111-1-111-1-111111111111    linear of order 2
ρ511-1-11-111-11-ii111-1i-ii-i-1-1-1-i-iii    linear of order 4
ρ611-1-1-1111-11-ii11-11-ii-ii-1-1-1ii-i-i    linear of order 4
ρ711-1-11-111-11i-i111-1-ii-ii-1-1-1ii-i-i    linear of order 4
ρ811-1-1-1111-11i-i11-11i-ii-i-1-1-1-i-iii    linear of order 4
ρ922-2-200222-200220000002220000    orthogonal lifted from D4
ρ1022220022-2-20022000000-2-2-20000    orthogonal lifted from D4
ρ112-22-200220000-2-2002-2-22000-22-22    orthogonal lifted from D8
ρ122-22-200220000-2-200-222-20002-22-2    orthogonal lifted from D8
ρ132-2-2200220000-2-200-2-2--2--2000-2--2--2-2    complex lifted from SD16
ρ142-2-2200220000-2-200--2--2-2-2000--2-2-2--2    complex lifted from SD16
ρ154400001-24000-2100-2-2-2-211-21111    orthogonal lifted from S3≀C2
ρ1644002-2-21-40001-2-11000022-10000    orthogonal lifted from S32⋊C4
ρ17440022-2140001-2-1-10000-2-210000    orthogonal lifted from S3≀C2
ρ184400-2-2-2140001-2110000-2-210000    orthogonal lifted from S3≀C2
ρ194400001-24000-2100222211-2-1-1-1-1    orthogonal lifted from S3≀C2
ρ204400-22-21-40001-21-1000022-10000    orthogonal lifted from S32⋊C4
ρ214400001-2-4000-2100-2i2i-2i2i-1-12-i-iii    complex lifted from S32⋊C4
ρ224400001-2-4000-21002i-2i2i-2i-1-12ii-i-i    complex lifted from S32⋊C4
ρ234-400001-200002-10087858383i-3i0ζ8ζ85ζ87ζ83    complex faithful
ρ244-400001-200002-1008838587-3i3i0ζ87ζ83ζ8ζ85    complex faithful
ρ254-400001-200002-10083887853i-3i0ζ85ζ8ζ83ζ87    complex faithful
ρ264-400001-200002-1008587883-3i3i0ζ83ζ87ζ85ζ8    complex faithful
ρ278-80000-420000-240000000000000    orthogonal faithful

Permutation representations of C3⋊S3.2D8
On 24 points - transitive group 24T666
Generators in S24
(2 22 10)(4 24 12)(6 18 14)(8 20 16)
(1 9 21)(3 11 23)(5 13 17)(7 15 19)
(1 5)(2 6)(3 7)(4 8)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 4 5 8)(2 7 6 3)(9 12 17 20)(10 19 18 11)(13 16 21 24)(14 23 22 15)

G:=sub<Sym(24)| (2,22,10)(4,24,12)(6,18,14)(8,20,16), (1,9,21)(3,11,23)(5,13,17)(7,15,19), (1,5)(2,6)(3,7)(4,8)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4,5,8)(2,7,6,3)(9,12,17,20)(10,19,18,11)(13,16,21,24)(14,23,22,15)>;

G:=Group( (2,22,10)(4,24,12)(6,18,14)(8,20,16), (1,9,21)(3,11,23)(5,13,17)(7,15,19), (1,5)(2,6)(3,7)(4,8)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4,5,8)(2,7,6,3)(9,12,17,20)(10,19,18,11)(13,16,21,24)(14,23,22,15) );

G=PermutationGroup([[(2,22,10),(4,24,12),(6,18,14),(8,20,16)], [(1,9,21),(3,11,23),(5,13,17),(7,15,19)], [(1,5),(2,6),(3,7),(4,8),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,4,5,8),(2,7,6,3),(9,12,17,20),(10,19,18,11),(13,16,21,24),(14,23,22,15)]])

G:=TransitiveGroup(24,666);

On 24 points - transitive group 24T667
Generators in S24
(1 21 12)(3 23 14)(5 17 16)(7 19 10)
(2 13 22)(4 15 24)(6 9 18)(8 11 20)
(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 14 18 23)(10 22 19 13)(11 12 20 21)(15 16 24 17)

G:=sub<Sym(24)| (1,21,12)(3,23,14)(5,17,16)(7,19,10), (2,13,22)(4,15,24)(6,9,18)(8,11,20), (9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,14,18,23)(10,22,19,13)(11,12,20,21)(15,16,24,17)>;

G:=Group( (1,21,12)(3,23,14)(5,17,16)(7,19,10), (2,13,22)(4,15,24)(6,9,18)(8,11,20), (9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,14,18,23)(10,22,19,13)(11,12,20,21)(15,16,24,17) );

G=PermutationGroup([[(1,21,12),(3,23,14),(5,17,16),(7,19,10)], [(2,13,22),(4,15,24),(6,9,18),(8,11,20)], [(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,14,18,23),(10,22,19,13),(11,12,20,21),(15,16,24,17)]])

G:=TransitiveGroup(24,667);

Matrix representation of C3⋊S3.2D8 in GL6(𝔽73)

100000
010000
001000
000100
000001
00007272
,
100000
010000
00727200
001000
000010
000001
,
7200000
0720000
001000
00727200
000010
00007272
,
660000
6760000
000010
000001
001000
000100
,
660000
6670000
0000720
000011
0072000
0007200

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[6,67,0,0,0,0,6,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[6,6,0,0,0,0,6,67,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,72,1,0,0,0,0,0,1,0,0] >;

C3⋊S3.2D8 in GAP, Magma, Sage, TeX

C_3\rtimes S_3._2D_8
% in TeX

G:=Group("C3:S3.2D8");
// GroupNames label

G:=SmallGroup(288,377);
// by ID

G=gap.SmallGroup(288,377);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,64,422,100,675,80,2693,2028,691,797,2372]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^8=1,e^2=c,a*b=b*a,c*a*c=d*b*d^-1=a^-1,d*a*d^-1=e*a*e^-1=c*b*c=b^-1,e*b*e^-1=a,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations

Export

Character table of C3⋊S3.2D8 in TeX

׿
×
𝔽