non-abelian, soluble, monomial
Aliases: C3⋊S3.2D8, C4.11S3≀C2, (C3×C12).3D4, D6⋊S3⋊1C4, C3⋊S3.2SD16, D6⋊D6.2C2, C12.29D6⋊7C2, C32⋊2(D4⋊C4), C2.5(S32⋊C4), (C2×C3⋊S3).5D4, C4⋊(C32⋊C4)⋊1C2, (C4×C3⋊S3).3C22, C3⋊Dic3.5(C2×C4), (C3×C6).4(C22⋊C4), SmallGroup(288,377)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C3⋊S3.2D8 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C4×C3⋊S3 — D6⋊D6 — C3⋊S3.2D8 |
C32 — C3×C6 — C3⋊Dic3 — C3⋊S3.2D8 |
Generators and relations for C3⋊S3.2D8
G = < a,b,c,d,e | a3=b3=c2=d8=1, e2=c, ab=ba, cac=dbd-1=a-1, dad-1=eae-1=cbc=b-1, ebe-1=a, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 560 in 88 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, D4, C23, C32, Dic3, C12, D6, C2×C6, C4⋊C4, C2×C8, C2×D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, D4⋊C4, C3⋊Dic3, C3×C12, C32⋊C4, S32, S3×C6, C2×C3⋊S3, S3×C8, S3×D4, C3×C3⋊C8, D6⋊S3, C3×D12, C4×C3⋊S3, C2×C32⋊C4, C2×S32, C12.29D6, C4⋊(C32⋊C4), D6⋊D6, C3⋊S3.2D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, D4⋊C4, S3≀C2, S32⋊C4, C3⋊S3.2D8
Character table of C3⋊S3.2D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 9 | 9 | 12 | 12 | 4 | 4 | 2 | 18 | 36 | 36 | 4 | 4 | 24 | 24 | 6 | 6 | 6 | 6 | 4 | 4 | 8 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -i | i | 1 | 1 | 1 | -1 | i | -i | i | -i | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -i | i | 1 | 1 | -1 | 1 | -i | i | -i | i | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | i | -i | 1 | 1 | 1 | -1 | -i | i | -i | i | -1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | i | -i | 1 | 1 | -1 | 1 | i | -i | i | -i | -1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ15 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -2 | -2 | -2 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | 1 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 0 | 0 | 2 | -2 | -2 | 1 | -4 | 0 | 0 | 0 | 1 | -2 | -1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ17 | 4 | 4 | 0 | 0 | 2 | 2 | -2 | 1 | 4 | 0 | 0 | 0 | 1 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 0 | 0 | -2 | -2 | -2 | 1 | 4 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 2 | 2 | 2 | 2 | 1 | 1 | -2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3≀C2 |
ρ20 | 4 | 4 | 0 | 0 | -2 | 2 | -2 | 1 | -4 | 0 | 0 | 0 | 1 | -2 | 1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | -2i | 2i | -2i | 2i | -1 | -1 | 2 | -i | -i | i | i | complex lifted from S32⋊C4 |
ρ22 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 2i | -2i | 2i | -2i | -1 | -1 | 2 | i | i | -i | -i | complex lifted from S32⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 2ζ87 | 2ζ85 | 2ζ83 | 2ζ8 | 3i | -3i | 0 | ζ8 | ζ85 | ζ87 | ζ83 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 2ζ8 | 2ζ83 | 2ζ85 | 2ζ87 | -3i | 3i | 0 | ζ87 | ζ83 | ζ8 | ζ85 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 2ζ83 | 2ζ8 | 2ζ87 | 2ζ85 | 3i | -3i | 0 | ζ85 | ζ8 | ζ83 | ζ87 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 2ζ85 | 2ζ87 | 2ζ8 | 2ζ83 | -3i | 3i | 0 | ζ83 | ζ87 | ζ85 | ζ8 | complex faithful |
ρ27 | 8 | -8 | 0 | 0 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(2 22 10)(4 24 12)(6 18 14)(8 20 16)
(1 9 21)(3 11 23)(5 13 17)(7 15 19)
(1 5)(2 6)(3 7)(4 8)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 4 5 8)(2 7 6 3)(9 12 17 20)(10 19 18 11)(13 16 21 24)(14 23 22 15)
G:=sub<Sym(24)| (2,22,10)(4,24,12)(6,18,14)(8,20,16), (1,9,21)(3,11,23)(5,13,17)(7,15,19), (1,5)(2,6)(3,7)(4,8)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4,5,8)(2,7,6,3)(9,12,17,20)(10,19,18,11)(13,16,21,24)(14,23,22,15)>;
G:=Group( (2,22,10)(4,24,12)(6,18,14)(8,20,16), (1,9,21)(3,11,23)(5,13,17)(7,15,19), (1,5)(2,6)(3,7)(4,8)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,4,5,8)(2,7,6,3)(9,12,17,20)(10,19,18,11)(13,16,21,24)(14,23,22,15) );
G=PermutationGroup([[(2,22,10),(4,24,12),(6,18,14),(8,20,16)], [(1,9,21),(3,11,23),(5,13,17),(7,15,19)], [(1,5),(2,6),(3,7),(4,8),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,4,5,8),(2,7,6,3),(9,12,17,20),(10,19,18,11),(13,16,21,24),(14,23,22,15)]])
G:=TransitiveGroup(24,666);
(1 21 12)(3 23 14)(5 17 16)(7 19 10)
(2 13 22)(4 15 24)(6 9 18)(8 11 20)
(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 14 18 23)(10 22 19 13)(11 12 20 21)(15 16 24 17)
G:=sub<Sym(24)| (1,21,12)(3,23,14)(5,17,16)(7,19,10), (2,13,22)(4,15,24)(6,9,18)(8,11,20), (9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,14,18,23)(10,22,19,13)(11,12,20,21)(15,16,24,17)>;
G:=Group( (1,21,12)(3,23,14)(5,17,16)(7,19,10), (2,13,22)(4,15,24)(6,9,18)(8,11,20), (9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,14,18,23)(10,22,19,13)(11,12,20,21)(15,16,24,17) );
G=PermutationGroup([[(1,21,12),(3,23,14),(5,17,16),(7,19,10)], [(2,13,22),(4,15,24),(6,9,18),(8,11,20)], [(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,14,18,23),(10,22,19,13),(11,12,20,21),(15,16,24,17)]])
G:=TransitiveGroup(24,667);
Matrix representation of C3⋊S3.2D8 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
6 | 6 | 0 | 0 | 0 | 0 |
67 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
6 | 6 | 0 | 0 | 0 | 0 |
6 | 67 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[6,67,0,0,0,0,6,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[6,6,0,0,0,0,6,67,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,72,1,0,0,0,0,0,1,0,0] >;
C3⋊S3.2D8 in GAP, Magma, Sage, TeX
C_3\rtimes S_3._2D_8
% in TeX
G:=Group("C3:S3.2D8");
// GroupNames label
G:=SmallGroup(288,377);
// by ID
G=gap.SmallGroup(288,377);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,64,422,100,675,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^8=1,e^2=c,a*b=b*a,c*a*c=d*b*d^-1=a^-1,d*a*d^-1=e*a*e^-1=c*b*c=b^-1,e*b*e^-1=a,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations
Export