Extensions 1→N→G→Q→1 with N=C4 and Q=C3⋊D12

Direct product G=N×Q with N=C4 and Q=C3⋊D12
dρLabelID
C4×C3⋊D1248C4xC3:D12288,551

Semidirect products G=N:Q with N=C4 and Q=C3⋊D12
extensionφ:Q→Aut NdρLabelID
C41(C3⋊D12) = C12⋊D12φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C448C4:1(C3:D12)288,559
C42(C3⋊D12) = C127D12φ: C3⋊D12/S3×C6C2 ⊆ Aut C448C4:2(C3:D12)288,557
C43(C3⋊D12) = C122D12φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C448C4:3(C3:D12)288,564

Non-split extensions G=N.Q with N=C4 and Q=C3⋊D12
extensionφ:Q→Aut NdρLabelID
C4.1(C3⋊D12) = C3⋊D48φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C4484+C4.1(C3:D12)288,194
C4.2(C3⋊D12) = C323SD32φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C4964-C4.2(C3:D12)288,196
C4.3(C3⋊D12) = C24.49D6φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C4484+C4.3(C3:D12)288,197
C4.4(C3⋊D12) = C323Q32φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C4964-C4.4(C3:D12)288,199
C4.5(C3⋊D12) = C2×C3⋊D24φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C448C4.5(C3:D12)288,472
C4.6(C3⋊D12) = C2×D12.S3φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C496C4.6(C3:D12)288,476
C4.7(C3⋊D12) = C2×C325SD16φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C448C4.7(C3:D12)288,480
C4.8(C3⋊D12) = C2×C323Q16φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C496C4.8(C3:D12)288,483
C4.9(C3⋊D12) = C12.27D12φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C496C4.9(C3:D12)288,508
C4.10(C3⋊D12) = C12.28D12φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C448C4.10(C3:D12)288,512
C4.11(C3⋊D12) = Dic3⋊Dic6φ: C3⋊D12/C3×Dic3C2 ⊆ Aut C496C4.11(C3:D12)288,514
C4.12(C3⋊D12) = C12.70D12φ: C3⋊D12/S3×C6C2 ⊆ Aut C4244+C4.12(C3:D12)288,207
C4.13(C3⋊D12) = C12.71D12φ: C3⋊D12/S3×C6C2 ⊆ Aut C4484-C4.13(C3:D12)288,209
C4.14(C3⋊D12) = C6.17D24φ: C3⋊D12/S3×C6C2 ⊆ Aut C448C4.14(C3:D12)288,212
C4.15(C3⋊D12) = C12.73D12φ: C3⋊D12/S3×C6C2 ⊆ Aut C496C4.15(C3:D12)288,215
C4.16(C3⋊D12) = D1218D6φ: C3⋊D12/S3×C6C2 ⊆ Aut C4244+C4.16(C3:D12)288,473
C4.17(C3⋊D12) = D12.29D6φ: C3⋊D12/S3×C6C2 ⊆ Aut C4484-C4.17(C3:D12)288,479
C4.18(C3⋊D12) = D67Dic6φ: C3⋊D12/S3×C6C2 ⊆ Aut C496C4.18(C3:D12)288,505
C4.19(C3⋊D12) = C12.D12φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C4484C4.19(C3:D12)288,206
C4.20(C3⋊D12) = C12.14D12φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C4484C4.20(C3:D12)288,208
C4.21(C3⋊D12) = D123Dic3φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C496C4.21(C3:D12)288,210
C4.22(C3⋊D12) = Dic6⋊Dic3φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C496C4.22(C3:D12)288,213
C4.23(C3⋊D12) = D12.28D6φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C4484C4.23(C3:D12)288,478
C4.24(C3⋊D12) = Dic6.29D6φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C4484C4.24(C3:D12)288,481
C4.25(C3⋊D12) = C12.30D12φ: C3⋊D12/C2×C3⋊S3C2 ⊆ Aut C448C4.25(C3:D12)288,519
C4.26(C3⋊D12) = C12.77D12central extension (φ=1)96C4.26(C3:D12)288,204
C4.27(C3⋊D12) = C12.78D12central extension (φ=1)48C4.27(C3:D12)288,205
C4.28(C3⋊D12) = D122Dic3central extension (φ=1)484C4.28(C3:D12)288,217
C4.29(C3⋊D12) = C12.80D12central extension (φ=1)484C4.29(C3:D12)288,218
C4.30(C3⋊D12) = C12.81D12central extension (φ=1)96C4.30(C3:D12)288,219
C4.31(C3⋊D12) = C12.82D12central extension (φ=1)484C4.31(C3:D12)288,225
C4.32(C3⋊D12) = D12.27D6central extension (φ=1)484C4.32(C3:D12)288,477

׿
×
𝔽