metabelian, supersoluble, monomial
Aliases: C12:1D12, Dic3:1D12, C62.81C23, (C3xC12):6D4, (C6xD12):6C2, (C2xD12):5S3, C6.24(S3xD4), C12:6(C3:D4), (C3xDic3):6D4, (C4xDic3):7S3, C2.26(S3xD12), C6.25(C2xD12), C4:1(C3:D12), C3:1(C12:3D4), C3:2(C4:D12), (C2xC12).140D6, C32:2(C4:1D4), (Dic3xC12):12C2, (C22xS3).16D6, (C6xC12).107C22, (C2xDic3).101D6, (C6xDic3).143C22, (C2xC4).83S32, C6.17(C2xC3:D4), (C2xC3:D12):4C2, C22.119(C2xS32), (C3xC6).107(C2xD4), (C2xC12:S3):12C2, (S3xC2xC6).31C22, C2.20(C2xC3:D12), (C2xC6).100(C22xS3), (C22xC3:S3).25C22, SmallGroup(288,559)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12:D12
G = < a,b,c | a12=b12=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >
Subgroups: 1250 in 243 conjugacy classes, 60 normal (22 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C2xD4, C3xS3, C3:S3, C3xC6, C3xC6, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C4:1D4, C3xDic3, C3xC12, S3xC6, C2xC3:S3, C62, C4xDic3, C4xC12, C2xD12, C2xD12, C2xC3:D4, C6xD4, C3:D12, C3xD12, C6xDic3, C12:S3, C6xC12, S3xC2xC6, C22xC3:S3, C4:D12, C12:3D4, Dic3xC12, C2xC3:D12, C6xD12, C2xC12:S3, C12:D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C3:D4, C22xS3, C4:1D4, S32, C2xD12, S3xD4, C2xC3:D4, C3:D12, C2xS32, C4:D12, C12:3D4, S3xD12, C2xC3:D12, C12:D12
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 39 29 16 5 47 33 24 9 43 25 20)(2 44 30 21 6 40 34 17 10 48 26 13)(3 37 31 14 7 45 35 22 11 41 27 18)(4 42 32 19 8 38 36 15 12 46 28 23)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 23)(14 22)(15 21)(16 20)(17 19)(37 41)(38 40)(42 48)(43 47)(44 46)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,39,29,16,5,47,33,24,9,43,25,20)(2,44,30,21,6,40,34,17,10,48,26,13)(3,37,31,14,7,45,35,22,11,41,27,18)(4,42,32,19,8,38,36,15,12,46,28,23), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,23)(14,22)(15,21)(16,20)(17,19)(37,41)(38,40)(42,48)(43,47)(44,46)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,39,29,16,5,47,33,24,9,43,25,20)(2,44,30,21,6,40,34,17,10,48,26,13)(3,37,31,14,7,45,35,22,11,41,27,18)(4,42,32,19,8,38,36,15,12,46,28,23), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,23)(14,22)(15,21)(16,20)(17,19)(37,41)(38,40)(42,48)(43,47)(44,46) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,39,29,16,5,47,33,24,9,43,25,20),(2,44,30,21,6,40,34,17,10,48,26,13),(3,37,31,14,7,45,35,22,11,41,27,18),(4,42,32,19,8,38,36,15,12,46,28,23)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,23),(14,22),(15,21),(16,20),(17,19),(37,41),(38,40),(42,48),(43,47),(44,46)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | ··· | 12R |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 12 | 12 | 36 | 36 | 2 | 2 | 4 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | D12 | D12 | C3:D4 | S32 | S3xD4 | C3:D12 | C2xS32 | S3xD12 |
kernel | C12:D12 | Dic3xC12 | C2xC3:D12 | C6xD12 | C2xC12:S3 | C4xDic3 | C2xD12 | C3xDic3 | C3xC12 | C2xDic3 | C2xC12 | C22xS3 | Dic3 | C12 | C12 | C2xC4 | C6 | C4 | C22 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 8 | 4 | 4 | 1 | 2 | 2 | 1 | 4 |
Matrix representation of C12:D12 ►in GL8(F13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,8,0,0,0,0,0,0,3,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,8,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12] >;
C12:D12 in GAP, Magma, Sage, TeX
C_{12}\rtimes D_{12}
% in TeX
G:=Group("C12:D12");
// GroupNames label
G:=SmallGroup(288,559);
// by ID
G=gap.SmallGroup(288,559);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,64,422,100,1356,9414]);
// Polycyclic
G:=Group<a,b,c|a^12=b^12=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations