Copied to
clipboard

G = C12:D12order 288 = 25·32

1st semidirect product of C12 and D12 acting via D12/C6=C22

metabelian, supersoluble, monomial

Aliases: C12:1D12, Dic3:1D12, C62.81C23, (C3xC12):6D4, (C6xD12):6C2, (C2xD12):5S3, C6.24(S3xD4), C12:6(C3:D4), (C3xDic3):6D4, (C4xDic3):7S3, C2.26(S3xD12), C6.25(C2xD12), C4:1(C3:D12), C3:1(C12:3D4), C3:2(C4:D12), (C2xC12).140D6, C32:2(C4:1D4), (Dic3xC12):12C2, (C22xS3).16D6, (C6xC12).107C22, (C2xDic3).101D6, (C6xDic3).143C22, (C2xC4).83S32, C6.17(C2xC3:D4), (C2xC3:D12):4C2, C22.119(C2xS32), (C3xC6).107(C2xD4), (C2xC12:S3):12C2, (S3xC2xC6).31C22, C2.20(C2xC3:D12), (C2xC6).100(C22xS3), (C22xC3:S3).25C22, SmallGroup(288,559)

Series: Derived Chief Lower central Upper central

C1C62 — C12:D12
C1C3C32C3xC6C62S3xC2xC6C2xC3:D12 — C12:D12
C32C62 — C12:D12
C1C22C2xC4

Generators and relations for C12:D12
 G = < a,b,c | a12=b12=c2=1, bab-1=a5, cac=a-1, cbc=b-1 >

Subgroups: 1250 in 243 conjugacy classes, 60 normal (22 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C2xD4, C3xS3, C3:S3, C3xC6, C3xC6, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xC6, C4:1D4, C3xDic3, C3xC12, S3xC6, C2xC3:S3, C62, C4xDic3, C4xC12, C2xD12, C2xD12, C2xC3:D4, C6xD4, C3:D12, C3xD12, C6xDic3, C12:S3, C6xC12, S3xC2xC6, C22xC3:S3, C4:D12, C12:3D4, Dic3xC12, C2xC3:D12, C6xD12, C2xC12:S3, C12:D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, D12, C3:D4, C22xS3, C4:1D4, S32, C2xD12, S3xD4, C2xC3:D4, C3:D12, C2xS32, C4:D12, C12:3D4, S3xD12, C2xC3:D12, C12:D12

Smallest permutation representation of C12:D12
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 39 29 16 5 47 33 24 9 43 25 20)(2 44 30 21 6 40 34 17 10 48 26 13)(3 37 31 14 7 45 35 22 11 41 27 18)(4 42 32 19 8 38 36 15 12 46 28 23)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 23)(14 22)(15 21)(16 20)(17 19)(37 41)(38 40)(42 48)(43 47)(44 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,39,29,16,5,47,33,24,9,43,25,20)(2,44,30,21,6,40,34,17,10,48,26,13)(3,37,31,14,7,45,35,22,11,41,27,18)(4,42,32,19,8,38,36,15,12,46,28,23), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,23)(14,22)(15,21)(16,20)(17,19)(37,41)(38,40)(42,48)(43,47)(44,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,39,29,16,5,47,33,24,9,43,25,20)(2,44,30,21,6,40,34,17,10,48,26,13)(3,37,31,14,7,45,35,22,11,41,27,18)(4,42,32,19,8,38,36,15,12,46,28,23), (1,29)(2,28)(3,27)(4,26)(5,25)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,23)(14,22)(15,21)(16,20)(17,19)(37,41)(38,40)(42,48)(43,47)(44,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,39,29,16,5,47,33,24,9,43,25,20),(2,44,30,21,6,40,34,17,10,48,26,13),(3,37,31,14,7,45,35,22,11,41,27,18),(4,42,32,19,8,38,36,15,12,46,28,23)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,23),(14,22),(15,21),(16,20),(17,19),(37,41),(38,40),(42,48),(43,47),(44,46)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B4C4D4E4F6A···6F6G6H6I6J6K6L6M12A12B12C12D12E···12J12K···12R
order122222223334444446···666666661212121212···1212···12
size1111121236362242266662···24441212121222224···46···6

48 irreducible representations

dim11111222222222244444
type+++++++++++++++++++
imageC1C2C2C2C2S3S3D4D4D6D6D6D12D12C3:D4S32S3xD4C3:D12C2xS32S3xD12
kernelC12:D12Dic3xC12C2xC3:D12C6xD12C2xC12:S3C4xDic3C2xD12C3xDic3C3xC12C2xDic3C2xC12C22xS3Dic3C12C12C2xC4C6C4C22C2
# reps11411114222284412214

Matrix representation of C12:D12 in GL8(F13)

120000000
012000000
00130000
008120000
000012000
000001200
0000001212
00000010
,
01000000
120000000
001200000
000120000
000011200
00001000
00000010
0000001212
,
120000000
01000000
00100000
008120000
000012000
000012100
00000010
0000001212

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,8,0,0,0,0,0,0,3,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,8,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12] >;

C12:D12 in GAP, Magma, Sage, TeX

C_{12}\rtimes D_{12}
% in TeX

G:=Group("C12:D12");
// GroupNames label

G:=SmallGroup(288,559);
// by ID

G=gap.SmallGroup(288,559);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,64,422,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<