Extensions 1→N→G→Q→1 with N=C3×Dic6 and Q=C4

Direct product G=N×Q with N=C3×Dic6 and Q=C4
dρLabelID
C12×Dic696C12xDic6288,639

Semidirect products G=N:Q with N=C3×Dic6 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic6)⋊1C4 = Dic6⋊Dic3φ: C4/C2C2 ⊆ Out C3×Dic696(C3xDic6):1C4288,213
(C3×Dic6)⋊2C4 = C6.Dic12φ: C4/C2C2 ⊆ Out C3×Dic696(C3xDic6):2C4288,214
(C3×Dic6)⋊3C4 = D124Dic3φ: C4/C2C2 ⊆ Out C3×Dic6244(C3xDic6):3C4288,216
(C3×Dic6)⋊4C4 = D122Dic3φ: C4/C2C2 ⊆ Out C3×Dic6484(C3xDic6):4C4288,217
(C3×Dic6)⋊5C4 = C3×C6.SD16φ: C4/C2C2 ⊆ Out C3×Dic696(C3xDic6):5C4288,244
(C3×Dic6)⋊6C4 = C3×D12⋊C4φ: C4/C2C2 ⊆ Out C3×Dic6484(C3xDic6):6C4288,259
(C3×Dic6)⋊7C4 = Dic3×Dic6φ: C4/C2C2 ⊆ Out C3×Dic696(C3xDic6):7C4288,490
(C3×Dic6)⋊8C4 = C62.13C23φ: C4/C2C2 ⊆ Out C3×Dic696(C3xDic6):8C4288,491
(C3×Dic6)⋊9C4 = C3×Dic6⋊C4φ: C4/C2C2 ⊆ Out C3×Dic696(C3xDic6):9C4288,658
(C3×Dic6)⋊10C4 = C3×C424S3φ: C4/C2C2 ⊆ Out C3×Dic6242(C3xDic6):10C4288,239
(C3×Dic6)⋊11C4 = C3×C2.Dic12φ: C4/C2C2 ⊆ Out C3×Dic696(C3xDic6):11C4288,250

Non-split extensions G=N.Q with N=C3×Dic6 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×Dic6).1C4 = D12.2Dic3φ: C4/C2C2 ⊆ Out C3×Dic6484(C3xDic6).1C4288,462
(C3×Dic6).2C4 = D12.Dic3φ: C4/C2C2 ⊆ Out C3×Dic6484(C3xDic6).2C4288,463
(C3×Dic6).3C4 = C3×D12.C4φ: C4/C2C2 ⊆ Out C3×Dic6484(C3xDic6).3C4288,678
(C3×Dic6).4C4 = C3×C8○D12φ: trivial image482(C3xDic6).4C4288,672

׿
×
𝔽