Extensions 1→N→G→Q→1 with N=S3×SL2(𝔽3) and Q=C2

Direct product G=N×Q with N=S3×SL2(𝔽3) and Q=C2
dρLabelID
C2×S3×SL2(𝔽3)48C2xS3xSL(2,3)288,922

Semidirect products G=N:Q with N=S3×SL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×SL2(𝔽3))⋊1C2 = D6.S4φ: C2/C1C2 ⊆ Out S3×SL2(𝔽3)484-(S3xSL(2,3)):1C2288,849
(S3×SL2(𝔽3))⋊2C2 = D6.2S4φ: C2/C1C2 ⊆ Out S3×SL2(𝔽3)484(S3xSL(2,3)):2C2288,850
(S3×SL2(𝔽3))⋊3C2 = S3×GL2(𝔽3)φ: C2/C1C2 ⊆ Out S3×SL2(𝔽3)244(S3xSL(2,3)):3C2288,851
(S3×SL2(𝔽3))⋊4C2 = SL2(𝔽3).11D6φ: C2/C1C2 ⊆ Out S3×SL2(𝔽3)484(S3xSL(2,3)):4C2288,923
(S3×SL2(𝔽3))⋊5C2 = D12.A4φ: C2/C1C2 ⊆ Out S3×SL2(𝔽3)484-(S3xSL(2,3)):5C2288,926
(S3×SL2(𝔽3))⋊6C2 = S3×C4.A4φ: trivial image484(S3xSL(2,3)):6C2288,925

Non-split extensions G=N.Q with N=S3×SL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×SL2(𝔽3)).C2 = S3×CSU2(𝔽3)φ: C2/C1C2 ⊆ Out S3×SL2(𝔽3)484-(S3xSL(2,3)).C2288,848

׿
×
𝔽