Copied to
clipboard

G = C2xS3xSL2(F3)  order 288 = 25·32

Direct product of C2, S3 and SL2(F3)

direct product, non-abelian, soluble

Aliases: C2xS3xSL2(F3), Q8:2(S3xC6), (S3xQ8):3C6, (C6xQ8):1C6, D6.4(C2xA4), C6:(C2xSL2(F3)), C22.8(S3xA4), C6.5(C22xA4), (C22xS3).4A4, C3:(C22xSL2(F3)), (C6xSL2(F3)):4C2, (C3xSL2(F3)):6C22, (C2xS3xQ8):C3, C2.6(C2xS3xA4), (C3xQ8):(C2xC6), (C2xQ8):4(C3xS3), (C2xC6).19(C2xA4), SmallGroup(288,922)

Series: Derived Chief Lower central Upper central

C1C2C3xQ8 — C2xS3xSL2(F3)
C1C2C6C3xQ8C3xSL2(F3)S3xSL2(F3) — C2xS3xSL2(F3)
C3xQ8 — C2xS3xSL2(F3)
C1C22

Generators and relations for C2xS3xSL2(F3)
 G = < a,b,c,d,e,f | a2=b3=c2=d4=f3=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, ede-1=d-1, fdf-1=e, fef-1=de >

Subgroups: 550 in 129 conjugacy classes, 35 normal (17 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2xC4, Q8, Q8, C23, C32, Dic3, C12, D6, C2xC6, C2xC6, C22xC4, C2xQ8, C2xQ8, C3xS3, C3xC6, SL2(F3), SL2(F3), Dic6, C4xS3, C2xDic3, C2xC12, C3xQ8, C3xQ8, C22xS3, C22xC6, C22xQ8, S3xC6, C62, C2xSL2(F3), C2xSL2(F3), C2xDic6, S3xC2xC4, S3xQ8, S3xQ8, C6xQ8, C3xSL2(F3), S3xC2xC6, C22xSL2(F3), C2xS3xQ8, S3xSL2(F3), C6xSL2(F3), C2xS3xSL2(F3)
Quotients: C1, C2, C3, C22, S3, C6, A4, D6, C2xC6, C3xS3, SL2(F3), C2xA4, S3xC6, C2xSL2(F3), C22xA4, S3xA4, C22xSL2(F3), S3xSL2(F3), C2xS3xA4, C2xS3xSL2(F3)

Smallest permutation representation of C2xS3xSL2(F3)
On 48 points
Generators in S48
(1 33)(2 34)(3 35)(4 36)(5 25)(6 26)(7 27)(8 28)(9 30)(10 31)(11 32)(12 29)(13 39)(14 40)(15 37)(16 38)(17 43)(18 44)(19 41)(20 42)(21 47)(22 48)(23 45)(24 46)
(1 9 16)(2 10 13)(3 11 14)(4 12 15)(5 45 43)(6 46 44)(7 47 41)(8 48 42)(17 25 23)(18 26 24)(19 27 21)(20 28 22)(29 37 36)(30 38 33)(31 39 34)(32 40 35)
(1 35)(2 36)(3 33)(4 34)(5 19)(6 20)(7 17)(8 18)(9 40)(10 37)(11 38)(12 39)(13 29)(14 30)(15 31)(16 32)(21 45)(22 46)(23 47)(24 48)(25 41)(26 42)(27 43)(28 44)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 24 3 22)(2 23 4 21)(5 37 7 39)(6 40 8 38)(9 18 11 20)(10 17 12 19)(13 25 15 27)(14 28 16 26)(29 41 31 43)(30 44 32 42)(33 46 35 48)(34 45 36 47)
(2 23 24)(4 21 22)(5 6 39)(7 8 37)(10 17 18)(12 19 20)(13 25 26)(15 27 28)(29 41 42)(31 43 44)(34 45 46)(36 47 48)

G:=sub<Sym(48)| (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,30)(10,31)(11,32)(12,29)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,9,16)(2,10,13)(3,11,14)(4,12,15)(5,45,43)(6,46,44)(7,47,41)(8,48,42)(17,25,23)(18,26,24)(19,27,21)(20,28,22)(29,37,36)(30,38,33)(31,39,34)(32,40,35), (1,35)(2,36)(3,33)(4,34)(5,19)(6,20)(7,17)(8,18)(9,40)(10,37)(11,38)(12,39)(13,29)(14,30)(15,31)(16,32)(21,45)(22,46)(23,47)(24,48)(25,41)(26,42)(27,43)(28,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,24,3,22)(2,23,4,21)(5,37,7,39)(6,40,8,38)(9,18,11,20)(10,17,12,19)(13,25,15,27)(14,28,16,26)(29,41,31,43)(30,44,32,42)(33,46,35,48)(34,45,36,47), (2,23,24)(4,21,22)(5,6,39)(7,8,37)(10,17,18)(12,19,20)(13,25,26)(15,27,28)(29,41,42)(31,43,44)(34,45,46)(36,47,48)>;

G:=Group( (1,33)(2,34)(3,35)(4,36)(5,25)(6,26)(7,27)(8,28)(9,30)(10,31)(11,32)(12,29)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,9,16)(2,10,13)(3,11,14)(4,12,15)(5,45,43)(6,46,44)(7,47,41)(8,48,42)(17,25,23)(18,26,24)(19,27,21)(20,28,22)(29,37,36)(30,38,33)(31,39,34)(32,40,35), (1,35)(2,36)(3,33)(4,34)(5,19)(6,20)(7,17)(8,18)(9,40)(10,37)(11,38)(12,39)(13,29)(14,30)(15,31)(16,32)(21,45)(22,46)(23,47)(24,48)(25,41)(26,42)(27,43)(28,44), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,24,3,22)(2,23,4,21)(5,37,7,39)(6,40,8,38)(9,18,11,20)(10,17,12,19)(13,25,15,27)(14,28,16,26)(29,41,31,43)(30,44,32,42)(33,46,35,48)(34,45,36,47), (2,23,24)(4,21,22)(5,6,39)(7,8,37)(10,17,18)(12,19,20)(13,25,26)(15,27,28)(29,41,42)(31,43,44)(34,45,46)(36,47,48) );

G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,25),(6,26),(7,27),(8,28),(9,30),(10,31),(11,32),(12,29),(13,39),(14,40),(15,37),(16,38),(17,43),(18,44),(19,41),(20,42),(21,47),(22,48),(23,45),(24,46)], [(1,9,16),(2,10,13),(3,11,14),(4,12,15),(5,45,43),(6,46,44),(7,47,41),(8,48,42),(17,25,23),(18,26,24),(19,27,21),(20,28,22),(29,37,36),(30,38,33),(31,39,34),(32,40,35)], [(1,35),(2,36),(3,33),(4,34),(5,19),(6,20),(7,17),(8,18),(9,40),(10,37),(11,38),(12,39),(13,29),(14,30),(15,31),(16,32),(21,45),(22,46),(23,47),(24,48),(25,41),(26,42),(27,43),(28,44)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,24,3,22),(2,23,4,21),(5,37,7,39),(6,40,8,38),(9,18,11,20),(10,17,12,19),(13,25,15,27),(14,28,16,26),(29,41,31,43),(30,44,32,42),(33,46,35,48),(34,45,36,47)], [(2,23,24),(4,21,22),(5,6,39),(7,8,37),(10,17,18),(12,19,20),(13,25,26),(15,27,28),(29,41,42),(31,43,44),(34,45,46),(36,47,48)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B4C4D6A6B6C6D···6I6J···6O6P···6W12A12B
order122222223333344446666···66···66···61212
size11113333244886618182224···48···812···121212

42 irreducible representations

dim1111112222223334466
type+++++-+++-++
imageC1C2C2C3C6C6S3D6C3xS3SL2(F3)SL2(F3)S3xC6A4C2xA4C2xA4S3xSL2(F3)S3xSL2(F3)S3xA4C2xS3xA4
kernelC2xS3xSL2(F3)S3xSL2(F3)C6xSL2(F3)C2xS3xQ8S3xQ8C6xQ8C2xSL2(F3)SL2(F3)C2xQ8D6D6Q8C22xS3D6C2xC6C2C2C22C2
# reps1212421124821212411

Matrix representation of C2xS3xSL2(F3) in GL4(F13) generated by

12000
01200
0010
0001
,
121200
1000
0010
0001
,
12000
1100
00120
00012
,
1000
0100
00111
00112
,
1000
0100
00127
0091
,
3000
0300
0010
0013
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[12,1,0,0,12,0,0,0,0,0,1,0,0,0,0,1],[12,1,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,11,12],[1,0,0,0,0,1,0,0,0,0,12,9,0,0,7,1],[3,0,0,0,0,3,0,0,0,0,1,1,0,0,0,3] >;

C2xS3xSL2(F3) in GAP, Magma, Sage, TeX

C_2\times S_3\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("C2xS3xSL(2,3)");
// GroupNames label

G:=SmallGroup(288,922);
// by ID

G=gap.SmallGroup(288,922);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-3,-2,269,360,123,515,242,4037]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^2=d^4=f^3=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,e*d*e^-1=d^-1,f*d*f^-1=e,f*e*f^-1=d*e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<