Extensions 1→N→G→Q→1 with N=C3×D12 and Q=C4

Direct product G=N×Q with N=C3×D12 and Q=C4
dρLabelID
C12×D1296C12xD12288,644

Semidirect products G=N:Q with N=C3×D12 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×D12)⋊1C4 = D123Dic3φ: C4/C2C2 ⊆ Out C3×D1296(C3xD12):1C4288,210
(C3×D12)⋊2C4 = C6.16D24φ: C4/C2C2 ⊆ Out C3×D1296(C3xD12):2C4288,211
(C3×D12)⋊3C4 = D124Dic3φ: C4/C2C2 ⊆ Out C3×D12244(C3xD12):3C4288,216
(C3×D12)⋊4C4 = D122Dic3φ: C4/C2C2 ⊆ Out C3×D12484(C3xD12):4C4288,217
(C3×D12)⋊5C4 = C3×C6.D8φ: C4/C2C2 ⊆ Out C3×D1296(C3xD12):5C4288,243
(C3×D12)⋊6C4 = C3×D12⋊C4φ: C4/C2C2 ⊆ Out C3×D12484(C3xD12):6C4288,259
(C3×D12)⋊7C4 = Dic3×D12φ: C4/C2C2 ⊆ Out C3×D1296(C3xD12):7C4288,540
(C3×D12)⋊8C4 = D12⋊Dic3φ: C4/C2C2 ⊆ Out C3×D1296(C3xD12):8C4288,546
(C3×D12)⋊9C4 = C3×Dic35D4φ: C4/C2C2 ⊆ Out C3×D1296(C3xD12):9C4288,664
(C3×D12)⋊10C4 = C3×C424S3φ: C4/C2C2 ⊆ Out C3×D12242(C3xD12):10C4288,239
(C3×D12)⋊11C4 = C3×C2.D24φ: C4/C2C2 ⊆ Out C3×D1296(C3xD12):11C4288,255

Non-split extensions G=N.Q with N=C3×D12 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×D12).1C4 = D12.2Dic3φ: C4/C2C2 ⊆ Out C3×D12484(C3xD12).1C4288,462
(C3×D12).2C4 = D12.Dic3φ: C4/C2C2 ⊆ Out C3×D12484(C3xD12).2C4288,463
(C3×D12).3C4 = C3×D12.C4φ: C4/C2C2 ⊆ Out C3×D12484(C3xD12).3C4288,678
(C3×D12).4C4 = C3×C8○D12φ: trivial image482(C3xD12).4C4288,672

׿
×
𝔽