Extensions 1→N→G→Q→1 with N=C3xD12 and Q=C4

Direct product G=NxQ with N=C3xD12 and Q=C4
dρLabelID
C12xD1296C12xD12288,644

Semidirect products G=N:Q with N=C3xD12 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xD12):1C4 = D12:3Dic3φ: C4/C2C2 ⊆ Out C3xD1296(C3xD12):1C4288,210
(C3xD12):2C4 = C6.16D24φ: C4/C2C2 ⊆ Out C3xD1296(C3xD12):2C4288,211
(C3xD12):3C4 = D12:4Dic3φ: C4/C2C2 ⊆ Out C3xD12244(C3xD12):3C4288,216
(C3xD12):4C4 = D12:2Dic3φ: C4/C2C2 ⊆ Out C3xD12484(C3xD12):4C4288,217
(C3xD12):5C4 = C3xC6.D8φ: C4/C2C2 ⊆ Out C3xD1296(C3xD12):5C4288,243
(C3xD12):6C4 = C3xD12:C4φ: C4/C2C2 ⊆ Out C3xD12484(C3xD12):6C4288,259
(C3xD12):7C4 = Dic3xD12φ: C4/C2C2 ⊆ Out C3xD1296(C3xD12):7C4288,540
(C3xD12):8C4 = D12:Dic3φ: C4/C2C2 ⊆ Out C3xD1296(C3xD12):8C4288,546
(C3xD12):9C4 = C3xDic3:5D4φ: C4/C2C2 ⊆ Out C3xD1296(C3xD12):9C4288,664
(C3xD12):10C4 = C3xC42:4S3φ: C4/C2C2 ⊆ Out C3xD12242(C3xD12):10C4288,239
(C3xD12):11C4 = C3xC2.D24φ: C4/C2C2 ⊆ Out C3xD1296(C3xD12):11C4288,255

Non-split extensions G=N.Q with N=C3xD12 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xD12).1C4 = D12.2Dic3φ: C4/C2C2 ⊆ Out C3xD12484(C3xD12).1C4288,462
(C3xD12).2C4 = D12.Dic3φ: C4/C2C2 ⊆ Out C3xD12484(C3xD12).2C4288,463
(C3xD12).3C4 = C3xD12.C4φ: C4/C2C2 ⊆ Out C3xD12484(C3xD12).3C4288,678
(C3xD12).4C4 = C3xC8oD12φ: trivial image482(C3xD12).4C4288,672

׿
x
:
Z
F
o
wr
Q
<